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seront préparés par la rédaction. Il faut fournir le texte original qui ne peut
contenir plus de 15 pages (plus 2 copies).

4. Comme des articles seront reproduits par un procédé photographique, les au-
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la bibliographie et l’adresse de l’auteurs doivent être tapés avec les petites
caractères 8 points typographiques et l’interligne de 12 points. Ne laissez pas
de ”blancs” inutiles pour respecter la densité du texte. En commençant le
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TITLE – INSTRUCTION FOR AUTHORS
SUBMITTING THE PAPERS FOR BULLETIN

Summary

Abstract should be written in clear and concise way, and should present all the main

points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES
DE �LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the
file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-
str.tex with Fig1.eps, give the title of the paper, the authors with their affilia-
tions/addresses, and go on with the body of the paper using all other means and
commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted
in electronic form (as separate files) in Encapsulated PostScript (EPS) format.

Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 Description 2 Description 3 Description 4

Row 1, Col 1 Row 1, Col 2 Row 1, Col 3 Row 1, Col 4
Row 2, Col 1 Row 2, Col 2 Row 2, Col 3 Row 2, Col 4

[4]



3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as at-
tachment files sent to the address zofija@mvii.uni.lodz.pl. If a whole manuscript
exceeds 2 MB composed of more than one file, all parts of the manuscript, i.e.
the text (including equations, tables, acknowledgements and references) and figures,
should be ZIP-compressed to one file prior to transfer. If authors are unable to send
their manuscript electronically, it should be provided on a disk (DOS format floppy
or CD-ROM), containing the text and all electronic figures, and may be sent by
regular mail to the address: Department of Solid State Physics, University of
Lodz, Bulletin de la Société des Sciences et des Lettres de �Lódź, Pomorska
149/153, 90-236 Lodz, Poland.
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DISSECTIONS IN HOLOMORPHIC GEOMETRY

Summary

Holomorphic geometry centers around biholomorphic equivalence and biholomorphic
invariants in C

N . This contribution deals mainly with one-dimensional case (conformal
mappings). We study Riemann mappings onto the unit disc Δ. A catalog of conformal
mappings resembles the Mendeleev table: it reveals general regularities.

1. General context

Ideas of Newton are not forgotten neither in physics, nor in mathematics. Every-
body knows that gravitational potential is harmonic outside masses. And harmonic
functions are of importance for complex analysis in one variable. Consider a domain
D ⊂ C. Let GD(z, t) z ∈ D be classical Green function of D. It is harmonic with
exception of logarithmic singularity at t. By Schiffer-Suszczyński identity [12] the
mixed derivative of GD yields the Bergman function of D

KD(z, t) = − 2
π

∂2

∂z∂t̄
GD(z, t) (z, t) ∈ D ×D.(1)

Singularity is destroyed in the process of differentiation and the right side is holo-
morphic in z and antiholomorphic in t.

Example 1. For the unit disc Δ

GΔ(z, t) = ln
∣∣∣∣1 − zt̄

z − t

∣∣∣∣ , KΔ(z, t) =
1

π(1 − zt̄)2
.(2)

Remark 1. Original definition of KD given by S. Bergman [2] is valid for all domains
D ⊂ CN N ≥ 1. Namely
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KD(z, t) :=
∑

ν

ϕν(z)ϕν(t),(3)

where the right side does not depend on particular choice of othonormal basis in
the Hilbert space L2H(D) := L2(D) ∩ Hol(D). For n ≥ 2 an analog of (1) is not
available.

For D ⊂ C the classical results of Myrberg, Carleson, Ramadanov imply that the
following conditions are equivalent:

(i) D admits no Green function,
(ii) D has polar complement,
(iii) KD(z, t) = 0 for all z, t ∈ D,
(iv) L2H(d) = {0}.

ForN ≥ 2 a characterization of domainsD ⊂ CN such that L2H(D) = 0 is unknown.

2. Relation with conformal mappings

For conformal mapping ϕ : D →W one verifies easily the transformation rule

KD(z, t) = KW (ϕ(z), ϕ(t))ϕ′(z)ϕ′(t).(4)

With W = Δ one can use (4) to compute KD. Conversely, knowing KD for simply
connected D one can use (4) to determine the Riemann mapping ϕ. Briefly: ϕ and
KD contain the same information.

From (4) follows that the expression

ρD(z, t) :=

(
1 −

(
KD(z, t)KD(t, z)
KD(z, z)KD(t, t)

)1/2
)1/2

(5)

is invariant under conformal mapping. In fact, ρD defines an invariant distance in
every D ⊂ C with nonpolar complement. For the unit disc one finds

ρΔ(z, t) =
∣∣∣∣ z − t

1 − zt̄

∣∣∣∣ .(6)

When a smooth curve γ in D is divided into very small segments by points
A1, A2, . . . , AS , the sum

ρD(A1, A2) + ρD(A2, A3) + . . .+ ρD(As−1, A)(7)

approaches (up to universal multiplicative constant) the Bergman length of γ. In
principle one can always compute numerically KD (and as a consequence ρD) via
alternating projections. For details see [10].

Usually an explicit expression for the Riemann mapping ϕ : D → Δ is determined
in a finite number of steps, say D → Ds → Ds−1 → . . . → D1 → Δ, and the
same steps yield KD. For convenience mapping catalog should include an expression
for KD along with ϕ. Such catalog (unpublished) was prepared in 1996 by Ms.
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A. Kucharczyk, a student at UMCS, Lublin. We quote three formulae (to be used in
the following).

1) The upper halfplane H = {z ∈ C; Im z > 0}

KH(z, t) =
−1

π(z − t̄)2

2) The first quadrant KQ1 = {z ∈ C; Re z > 0, Im z > 0}

KQ1(z, t) =
−4zt̄

π(z2 − t̄2)2

3) The lower strip S = {z ∈ C;π < Im z < 0}

KS(z, t) =
−1
4π

(
sinh

z − t̄

2

)−2

It is easy to see that the Bergman functions for upper and lower halfplanes are
“the same” like sparrows which sit at different places. Also the Bergman functions
for left and right halfplanes are “the same”; see the diagram below.

Fig. 1: Diagram 1. Halfplanes.

Four quadrants Q1, Q2, Q3, Q4 have “the same” Bergman functions; see below.

Fig. 2: Diagram 2. Quadrants.
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Strips of width π are more like halfplanes; see below.

Fig. 3: Diagram 3. Strips of width π.

3. A theorem on dissections

One can remove from D an interval, or halfline to obtain so-called slit domain D′.
Slit domains are important in the function theory. For example the Koebe function
which maps Δ onto C \ (∞,−1/4) appears in the uniformization problem and in
coefficient problem. Extending the slit all the way results in dissection of D into a
pair of domains, say A and B. By direct calculations (three subsequent sections) we
establish the following

Theorem 1. In a number of cases a dissection of D has the following properties:
(a) limKD′(z, t) = KA(z, t), z, t ∈ A,
(b) limKD′(z, t) = KB(z, t), z, t ∈ B.

Remark 2. It is quite probable that conditions (a) and (b) are satisfied for each
dissection in every domain D ⊂ C. But no proof is known. Any progress in this
direction would be of interest.

4. First case: two halfplanes

Consider D = C. We shall dissect complex plane along the real axis. The slit plane
C′ := C\[0,+∞) is mapped by Φ(z) =

√
z (with

√−1 = i) onto the upper halfplane.
By transformation rule

KC′(z, t) =
−1

π
(√

z −√
t
)2

1

4
√
z
√
t
.(8)
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More generally, for D′ := C \ [−d,+∞) where d > 0:

KD′(z, t) =
−1

π
(√

z + d−√
t+ d

)2

1

4
√
z + d

√
t+ d

.(9)

We look for the limit when d→ +∞. Symmetry of diagram 1 suggests that we prove
(a) and (b) simultaneously. We remove irrationality in the denominator, then divide
numerator and denominator by d. As a result

KD′(z, t) =
−1
π

(√
z + d+

√
t+ d

)2

(z − t)2
1

4
√
z + d

√
t+ d

(10)

=K±H(z, t)

(√
z
d + 1 +

√
t
d + 1

)2

4
√

z
z + 1

√
t
d + 1

−→
d→+∞

K±H(z, t).

�

Remark 3 (casual). It is well known that KC ≡ 0. In some sense, our calculation
describes “creation out of nothing”. Here a bounded slit is of no avail (it yields
doubly connected domain). At every stage of described evolution the whole halfline
is absent. In a way “the process has no beginning”.

5. Second case: two quadrants

We shall consider the upper halfplane D. Recall that conformal mappings are useful
in studying fluid flows. An elementary book by Janowski and Kaczmarski [6] gives
convincing explanation. The authors present an example of flow over vertical obstacle
which leads immediately to the idea of dissection. Take D′ := H \ (0, id] where d > 0
and consider conformal mapping Φ : D′ → H given by

Φ)z) =
√
z2 + d2

(√−1 = i
)
.(11)

In view of diagram 2 we may treat cases (a), (b) simultaneously. Applying transfor-
mation rule and arguing as in example 5 we find that

KD′(z, t) =
−1

π
(√

z2 + d2 −√
t2 + d2

)2

zt̄√
z2 + d2

√
t2 + d

(12)

=
−zt̄

π (z2 − t̄2)2

(√
z2 + d2 +

√
t2 + d2

)2
√
z2 + d2

√
t2 + d2

−→
d→+∞

−zt̄
π (z2 − t̄2)2

4 = KQ(z, t).

�
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Remark 4. It is appropriate to indicate here the article Witold Janowski 1912–1972,
published by prof. Z. Jakubowski in the Proceedings of II Conference Analytic Func-
tions, �Lódź 1973.

6. Third case: a halfplane and a strip

Consider D = H̃ , where H̃ = {z − πi; z ∈ H}. We make horizontal slit along
negative reals, so that D′ = H̃ \ (−∞, 0]; see diagram 4. The mapping Φ : H → D′

given explicitely by

Φ(z) = z + ln(1 − z), (ln 1 = 0),(13)

appears on p. 162 of the catalog [8] prepared by �Lawrik and Sawienkow. Obviously

Φ′(z) = 1 − 1
1 − z

=
z

z − 1
.(14)

The mapping Φ : H → D′ goes in another direction then before; see the diagram 4.
With ζ = Φ(z), τ = Φ(t), we may write the transformation rule as

KD′(ξ, τ) = KH(z, t)
(z − 1)(t̄− 1)

zt̄
.(15)

Fig. 4: Diagram 4. Halfplane H̃ is dissected into the halfplane H and strip S of width π.

Let us denote by r, ϕ the absolute value and principal argument of the number
z− 1. Hence ϕ− π gives the principal argument of 1− z. We want to study how slit
elongation affects KD′(ζ, τ). Or, equivalently, we can study KD′(z′, t′) where (z′, t′)
results from horizontal translation of ζ, τ) in the opposite direction. To this aim we
shall consider in H two lines, determined by z′ = Φ(z), which intersect at z:

Re Φ(z) = cz′ , Im Φ = dz′ = Imζ(16)

and two lines, determined by t′ = Φ(t), which intersect t at

Re Φ(t) = ct′ , Im Φ(t) = dt′ = Im τ.(17)
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We shall investigate the behavior of z, t when cz′ , cτ ′ → −∞. Note that z′ = Φ(z) is
the corresponding translation of ζ and t′ = Φ(t) is the corresponding translation of
τ . Hence cz′ − ct′ = Re(ζ − τ).

In the present example domains A,B are visibly different. We shall give separate
proofs for conditions (a), (b) of Theorem 1. In case (a) we have d ∈ (0,+∞), ϕ ∈
(0, π), r > 0. In case (b) we have d ∈ (−π, 0), ϕ ∈ (0, π), r > 0.

Proof of (a). We shall first consider equations (16), but analogous conclusions can
be derived from equations (17). We may rewrite (16) in the form

1 + r cosϕ+ ln r = cz′ ,(18)

r sinϕ+ ϕ− π = dz′ ,(19)

where cz′ ∈ R, dz′ ∈ (0,+∞) and ϕ ∈ (0, π). For cz′ → −∞ formula (18) implies
r → +∞ or r → 0. In the second case (19) implies that ϕ → π + dz′ > π, a
contradiction. Therefore r → +∞. By (18) cz′r−1 is close to cosϕ, and hence stays
away from +1. By (19) sinϕ→ 0, and hence ϕ→ π. Now (19) yields r sinϕ → dz′ .
Also cosϕ→ −1 and cz′r−1 → 1.

Analogous reasoning applies to equations (17). Hence we have a pair of equations

1 + rz′ cosϕz′ + ln rz′ = cz ,

(20)

1 + rt′ cosϕt′ + ln rt′ = ct

and an identity

lim
rz′

rt′
= lim

cz′

ct′
= 1.(21)

This yields, by subtracting equations (20):

lim (rz′ cosϕz′ − rt′ cosϕt′) : Re(ξ − τ) = Re(ζ − τ̄ ).(22)

We know already that rz′ sinϕz′ → dz′ = Imζ, rt′ sinϕt′ → dt′ = Imτ . Hence (22)
implies that

lim(z − t̄) = Re(ζ − τ̄) + iIm(ζ − τ̄ ) = ζ − τ̄ .(23)

Now we can pass to the limit in formula (15). Since rz′ → +∞, rt′ → +∞, the
second factor converges to 1 and in view of (23):

limKD′ (ξ, τ) = limKH(z, t) = lim
−1

π (z − t̄)2
= KH(ζ, τ).(24)

�
Proof of (b). Again, we consider first equations (16) and take for granted analogous
results for equations (17). As before (18) leads to an alternative: r → +∞ or r → 0.
But the first case leads to contradiction. As before (19) yields sinϕ→ 0, ϕ→ π and
(again by (19)) r sinϕ → d. But now the latter is impossible since r sinϕ ≥ 0 while
d < 0. Therefore r → 0.
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Now, in view of rz′ , rt′ → 0, subtracting equations (20) yields

lim (ln rz′ − ln rt′) = lim (cz′ − ct′) = Re(ζ − τ) = Re(ζ − τ̄ ).(25)

Moreover (19) yields (now correct) limits

limϕz′ = dz′ = Imζ, limϕt′ = dt′ = Imτ.(26)

With abbreviations

α := ln rz′ + iϕz′ β := ln rt′ − iϕt′(27)

we find with (25), (26) the limits

lim Re
(
α− β

)
= Re (ζ − τ) , lim Im

(
α− β

)
= Imζ + Imτ = Im (ζ − τ) .(28)

Moreover

(z − 1) (t̄− 1) = eαeβ̄ , z − t̄ = eα − eβ .(29)

With this results we consider the limit in formula (15). Obviously z → 1, t → 1.
Hence

limKD′(ζ, τ) = limKH(z, t)(z − 1)(t̄1) = lim
− expα expβ

π
(
expα− expβ

)2
= lim

−1

π
[
exp

(
α/2 − β/2

)− exp
(
β/2 − α/2

)]2 = lim
−1

4π sinh2
(
α/2 − β/2

)(30)

=
−1
4π

sinh−2;
ζ − τ

2
= KS(ζ, τ).

�
Remark 5. Direct verification of general result with concrete examples is not complete
without purpose (it fosters sideway observations). In the above calculations we have
discovered a link between transcendental expressions r+ln r, ϕ+sinϕ and Bergman
theory.

7. Rogowski condenser

In this section I would like to indicate related problems. Let us consider two parallel
slits. By removing from D = C two halflines parallel to negative reals one obtains
doubly slit domain D′′. Such domain, with slits (−∞ + πi,−1 + πi] and (−∞ −
πi,−1 − πi) appears on p. 217 in the catalog [8]. The function

Φ(z) = z + ez(31)

maps conformally T = {−π < Imz < π} onto D′′; see diagram 5. One expects that
KD′′ , under elongation of slits, would produce three Bergman functions: one for a
strip and two for halfplanes.
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Fig. 5: Diagram 5. A strip is mapped onto a doubly slited plane.

The domain D′′ appears as description of the condenser developed by Rogowski.
His invention is widely used in precise measuring instruments; see the textbook by
Fuks and Szabat [4] p. 353–357 (and the recent internet advertisements).

Of course, one can cosider domains with any finite number of slits, or even with
infinitely many slits. Also there are reasons to study slited domains which are not
simply connected. In the beginning of XX century an infinitely connected domains
with periodic slits (Rus. reshetka, Eng. grating, Germ. Gitter) were studied within
wing theory by Czap�lygin [3], Grammel [5], König [7] , Achiezer [1]. Recently such
domains may by of interest in connection with Kobayashi completeness conjecture
[9, 11]. For general infinitely connected domains the best mathematical reference is
Tsuji [13].
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ROZDZIELENIA W GEOMETRII HOLOMORFICZNEJ

S t r e s z c z e n i e
Geometria holomorficzna jest skoncentrowana wokó�l równoważności boholomorficznej

i niezmienników biholomorficznych w przestrzeni C
N . Obecny przyczynek dotyczy g�lównie

przypadku jednowymiarowego (odwzorowań konforemnych). Badamy odwzorowania Rie-
manna na ko�lo jednostkowe Δ. Uzyskany katalog odwzorowań konforemnych przypomina
tablicȩ Mendelejewa: wykazuje on ogólna̧ regularność.
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DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE �LÓDŹ
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INVESTIGATION OF QUATERNIONIC QUADRATIC
EQUATIONS I
FACTORIZATION AND PASSING TO A SYSTEM OF REAL EQUATIONS

Summary

Sufficient conditions for a possibility to transform a quaternionic equation of the form
pxqxr−sxt−uxv+w = 0 to one of the form (αxβ−a)(γxδ−b) = 0 are formulated. The shape
of the set of solutions of any quaternionic equation of the form x2 +

∑m
�=1 a(�)xb(�) + c = 0

is investigated.

1. Introduction

Since the system of quaternions is the most known extension of the system of complex
numbers, it is natural to investigate solutions of quaternionic polynomial equations.
But this task turns out to be so difficult. The work [2] contains a very beautiful
theory about solutions of quaternionic equations of the form

n∑
�=0

a�x
� = 0 or

n∑
�=0

x�a� = 0

(here and below x is the unknown). But, since the system of quaternions is not
commutative, the general form of a quaternionic polynomial equation is much more
complicated, namely:

n∑
p=1

(mp∑
�=1

ap,�,1xap,�,2x . . . ap,�,pxap,�,p+1

)
+ c = 0.(1)

The problem about solutions of any such equation is far from being completely
investigated.

As for now, a few particular cases of (1) are investigated in several works. Namely,
[4] gives complete description of solutions of linear equations, in [3] and [1] only
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several kinds of quadratic equations are investigated. This work is the next little
step on this way. Here we investigate only quadratic equations (and again not all,
but only some classes, though comparatively wide). In Section 3 we look for classes
of quaternionic quadratic equations which can be easily solved by factorization of
the left part into a product of linear polynomials. In Section 4 we investigate shape
of the set of solutions of any quaternionic equation of the form

x2 +
m∑

�=1

a(�)xb(�) + c = 0.

2. Notations of the paper

We use the standard notations i, j, k for the quaternionic imaginary units; recall
that

i2 = j2 = k2 = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

We always use natural subindices to denote the components of a quaternion: x =
x0 +x1i+x2j+x3k, where x0, x1, x2, x3 ∈ R. Note also that we deal only with real
quaternions, i. e., their components are real; we use the word “quaternion” only for
a real one and denote the system of all (real) quaternions by H.

3. Factorisable quaternionic quadratic equations

Note that in the system H there is no such simple connection between roots of
polynomials and factorization of polynomials by linear factors as in C. For example,
the equation x2 − i = 0 has exactly two quaternionic solutions:

(1 + i)√
2

and − (1 + i)√
2

(this fact can be checked by the theory from [2]). But the expressions

x2 − i and
(
x− (1 + i)√

2

)(
x+

(1 + i)√
2

)
are not identically equal if x is any quaternion; the latter expression equals

x2 +
xi√

2
− ix√

2
− i

and cannot be reduced to the former expression due to non-commutativity of quater-
nions.

Nevertheless if a quaternionic polynomial can be written as (x− a1) . . . (x− an)
then {a1, . . . , an} is the set of all its roots; this is obvious from the fact of absence of
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zero divisors in H. So, it is useful to know a method to determine whether a given
quaternionic polynomial can be factored as above.

We will restrict our investigation to quadratic polynomials. Yet, we will take
somewhat more general factors than above-mentioned ones, namely of the form
αxβ − a, where α �= 0, β �= 0. Really, the equation αxβ − a = 0 can be easily
solved as follows: αxβ = a, x = α−1aβ−1. So, an arbitrary quadratic polynomial
constructed as a product of such factors is

(αxβ − a)(γxδ − b).

By simple direct calculations we rewrite it as follows:

αxβγxδ − αxβb− aγxδ + ab.(2)

We have obtained a polynomial of the form pxqxr − sxt− uxv + w.
Thus our aim is to describe conditions under which it is possible to reduce a

quaternionic equation of the form

pxqxr − sxt− uxv + w = 0(3)

to one of the form

(αxβ − a)(γxδ − b) = 0(4)

(where x is the unknown, and every other letter denotes a known quaternion).
Comparing (3) and (2), we pass to the following system of quaternionic equations

with known quaternions p, q, r, s, t, u, v, w and unknown quaternions α, β, γ, δ, a,
b:

α = p, βb = t,

βγ = q, aγ = u,

δ = r, δ = v,

α = s, ab = w.

(5)

Solvability of this system is a sufficient condition for (3) to be factorisable in the
proper sense.

By simple equivalent transformation we rewrite (5) as follows:

p = s, βγ = q,

r = v, βb = t,

α = p, aγ = u,

δ = r, ab = w.

(6)

Hence we have already obtained information that (5) can be solvable only if p = s

and r = v, and also we can see that α and δ are determined exactly.
According to the latter four equations of (6), conditions of the solvability essen-

tially depend on whether q, t, u, or w equals 0. It is easy to conclude from these four
equations that:

• if q = 0, then the system can be solved only if t = 0 or u = 0;

• if t = 0, then the system can be solved only if q = 0 or w = 0;
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• if u = 0, then the system can be solved only if q = 0 or w = 0;

• if w = 0, then the system can be solved only if t = 0 or u = 0.

Hence if the system is solvable and at least one from the coefficients q, t, u, w
equals 0 then in reality at least two from them equal 0. But since all these four
coefficients are from different terms of (3), such situation means that there are at
most two non-zero terms in the left part of (3) and thus the equation is much
simpler than a typical equation of the form (3). If one wants to solve such an equation,
we recommend to apply a direct method similar to one used in Section 4 rather than
to try to factorize it. Therefore we will not describe the further theory concerning
these cases of zeros, and we hope that the reader will forgive us for absence of the
corresponding long and boring descriptions of different cases.

Thus in what follows we assume that q �= 0, t �= 0, u �= 0, w �= 0; note that
this assumption implies that also γ �= 0. Let us continue to look for equivalent
transformations of (5):

p = s, β = qγ−1,

r = v, b = β−1t,

α = p, a = uγ−1,

δ = r, a = wb−1;

p = s, β = qγ−1,

r = v, b = γq−1t,

α = p, a = uγ−1,

δ = r, uγ−1 = wt−1qγ−1;

p = s, β = qγ−1,

r = v, b = γq−1t,

α = p, a = uγ−1,

δ = r, u = wt−1q.

Therefore we have obtained one more strict condition on the coefficients of (3)
for (5) to be solvable: u = wt−1q. But moreover we can see that it is possible to
calculate exactly not only α and δ, but also β, a, and b if γ is given; moreover every
non-zero quaternion can be taken as γ. This information implies that fulfilment of
the relations p = s, r = v, and u = wt−1q is a necessary and sufficient condition for
(5) to be solvable, and thus it is a sufficient condition for (3) to be factorisable in
the sense described above.

Let us describe the obtained information as a proposition:

Proposition 1. Let a quaternionic equation of the form (3) be given (the unknown
is x), where q �= 0, t �= 0, u �= 0, w �= 0. Let moreover

p = s, r = v, u = wt−1q.(7)
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Then it is possible to rewrite this equation as (4). In order to calculate the coefficients
of (4) it is sufficient to take any non-zero quaternion γ and to apply the formulae:

α = p, β = qγ−1, δ = r, a = uγ−1, b = γq−1t.

In particular, it is possible to take γ = 1 getting the formulae:

α = p, β = q, γ = 1, δ = r, a = u, b = q−1t.(8)

Then it is important to note the following: it is possible that an equation of
the form (3) can be factored, but by a way somewhat different from one described
above. First of all, it is possible to rearrange the second and third terms in (3).
Then s will be instead of u, t will be instead of v, and vice versa. This gives a second
interpretation of (7) and widens the set of equations known to be factorizable.

Then it is known that every real number commutes with every quaternion. There-
fore we can consider a case where (3) can be factored as above after moving some
real factors between coefficients. So, now we put

s̃ =
s

ρ1
, t̃ = ρ1t, ũ =

u

ρ2
, ṽ = ρ2v, p̃ =

p

ρ3
, q̃ =

q

ρ4
, r̃ = ρ3ρ4r,(9)

where ρ1, ρ2, ρ3, ρ4 are non-zero real numbers. Then (3) can be transformed into

p̃xq̃xr̃ − s̃xt̃− ũxṽ + w = 0,

and for the factorability it is sufficient to assume that

p̃ = s̃, r̃ = ṽ, ũ = wt̃−1q̃,

or
p

ρ3
=

s

ρ1
, ρ3ρ4r = ρ2v,

u

ρ2
=
wt−1q

ρ1ρ4
,

or
p =

ρ3

ρ1
s, r =

ρ2

ρ3ρ4
v, u =

ρ2

ρ1ρ4
wt−1q.

Let us introduce the following real numbers:

σ1 :=
ρ3

ρ1
, σ2 :=

ρ2

ρ3ρ4
.(10)

Since ρ1, ρ2, ρ3, ρ4 may be arbitrary non-zero real numbers, it is easy to see that
σ1 and σ2 are also arbitrary non-zero real numbers. Then

p = σ1s, r = σ2v, u = σ1σ2wt
−1q.(11)

Hence (11) (with any σ1, σ2 ∈ R \ {0}) is a sufficient condition for (3) to be factor-
izable in the proper sense.

Let us find out by which formulae should one calculate the coefficients α, β, γ,
δ, a, b in the case of (11). From a given equation of the form (3) satisfying (11) one
knows σ1 and σ2. One can choose any real ρ1, ρ2, ρ3, ρ4 satisfying (10). It is easy
to see that the following values are appropriate:

ρ1 = 1, ρ2 = σ1σ2, ρ3 = σ1, ρ4 = 1.(12)
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Then, taking into attention (8), (9), and (12), it is easy to get the following formulae
(note that we have to apply (8) with p̃, q̃, r̃, s̃, t̃, ũ, ṽ instead of p, q, r, s, t, u, v):

α =
p

σ1
, β = q, γ = 1, δ = σ1r,

a =
u

σ1σ2
, b = q−1t.

(13)

At last let us consider such a simple operation as multiplication of the equation
by a quaternionic constant. If the factor is on the left, then p, s, u, w are multiplied
on the left by the same quaternion and it is easy to see that (11) remains true.
It is easy to carry out analogous consideration for right multiplication, taking into
account that

(tc)−1 = c−1t−1.

So, this possibility of multiplication does not widen the set of equations known to
be factorizable in the proper sense.

As a conclusion of the considerations above we formulate the following proposi-
tion:

Proposition 2. Let a quaternionic equation of the form (3) be given (the unknown
is x), where q �= 0, t �= 0, u �= 0, w �= 0. Let moreover there exist such σ1, σ2 ∈ R\{0}
for which the relations (11) hold true. Then it is possible to rewrite this equation as
(4). The coefficients of (4) can be calculated by (13).

Moreover if the relations (11) are not true then one should check whether they
would be true after rearrangement of the second and third terms in (3). If yes, then
the factorization is possible by the same way after this rearrangement.

4. Sets of solutions of quaternionic equations
of the form x2 +

∑m
�=1 a(�)xb(�) + c = 0

Consider an equation

x2 +
m∑

�=1

a(�)xb(�) + c = 0,(14)

where x is an unknown quaternion, a(1), . . . , a(m), b(1), . . . , b(m), c are known
quaternions. Our aim is to investigate the set of all solutions of (14). We shall do
this reducing the quaternionic equation to a system of real equations.

Let us rewrite (14) decomposing every quaternion by the standard basis of H:

(x0 + x1i+ x2j + x3k)2 +
m∑

�=1

(a(�)
0 + a

(�)
1 i+ a

(�)
2 j + a

(�)
3 k)(x0 + x1i+ x2j + x3k)(b(�)0 + b

(�)
1 i+ b

(�)
2 j + b

(�)
3 k) +

(c0 + c1i+ c2j + c3k) = 0.
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Opening all brackets and then moving each imaginary unit out of new brackets, we
pass to the following equation:

(
x2

0 − x2
1 − x2

2 − x2
3 + c0 +

m∑
�=1

(
(a(�)

0 b
(�)
0 − a

(�)
1 b

(�)
1 − a

(�)
2 b

(�)
2 − a

(�)
3 b

(�)
3 )x0 +

(a(�)
2 b

(�)
3 − a

(�)
1 b

(�)
0 − a

(�)
0 b

(�)
1 − a

(�)
3 b

(�)
2 )x1 +

(a(�)
3 b

(�)
1 − a

(�)
2 b

(�)
0 − a

(�)
0 b

(�)
2 − a

(�)
1 b

(�)
3 )x2 +

(a(�)
1 b

(�)
2 − a

(�)
3 b

(�)
0 − a

(�)
2 b

(�)
1 − a

(�)
0 b

(�)
3 )x3

))
+

(
2x0x1 + c1 +

m∑
�=1

(
(a(�)

0 b
(�)
1 + a

(�)
1 b

(�)
0 + a

(�)
2 b

(�)
3 − a

(�)
3 b

(�)
2 )x0 +

(a(�)
0 b

(�)
0 − a

(�)
1 b

(�)
1 + a

(�)
2 b

(�)
2 + a

(�)
3 b

(�)
3 )x1 +

(a(�)
0 b

(�)
3 − a

(�)
2 b

(�)
1 − a

(�)
3 b

(�)
0 − a

(�)
1 b

(�)
2 )x2 +

(a(�)
2 b

(�)
0 − a

(�)
3 b

(�)
1 − a

(�)
1 b

(�)
3 − a

(�)
0 b

(�)
2 )x3

))
i+

(
2x0x2 + c2 +

m∑
�=1

(
(a(�)

0 b
(�)
2 − a

(�)
1 b

(�)
3 + a

(�)
2 b

(�)
0 + a

(�)
3 b

(�)
1 )x0 +

(a(�)
3 b

(�)
0 − a

(�)
1 b

(�)
2 − a

(�)
0 b

(�)
3 − a

(�)
2 b

(�)
1 )x1 +

(a(�)
0 b

(�)
0 + a

(�)
1 b

(�)
1 − a

(�)
2 b

(�)
2 + a

(�)
3 b

(�)
3 )x2 +

(a(�)
0 b

(�)
1 − a

(�)
3 b

(�)
2 − a

(�)
2 b

(�)
3 − a

(�)
1 b

(�)
0 )x3

))
j +

(
2x0x3 + c3 +

m∑
�=1

(
(a(�)

0 b
(�)
3 + a

(�)
1 b

(�)
2 − a

(�)
2 b

(�)
1 + a

(�)
3 b

(�)
0 )x0 +

(a(�)
0 b

(�)
2 − a

(�)
1 b

(�)
3 − a

(�)
3 b

(�)
1 − a

(�)
2 b

(�)
0 )x1 +

(a(�)
1 b

(�)
0 − a

(�)
2 b

(�)
3 − a

(�)
3 b

(�)
2 − a

(�)
0 b

(�)
1 )x2 +

(a(�)
0 b

(�)
0 + a

(�)
1 b

(�)
1 + a

(�)
2 b

(�)
2 − a

(�)
3 b

(�)
3 )x3

))
k = 0.

(15)

Obviously, this equation is equivalent to the corresponding system of four equations
with real coefficients and with four real unknowns x0, x1, x2, x3. Write down this
system introducing new notations for some long expressions:
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⎧⎪⎪⎨
⎪⎪⎩

x2
0 − x2

1 − x2
2 − x2

3 + α0x0 + α1x1 + α2x2 + α3x3 + c0 = 0,
2x0x1 + β0x0 + β1x1 + β2x2 + β3x3 + c1 = 0,
2x0x2 + γ0x0 + γ1x1 + γ2x2 + γ3x3 + c2 = 0,
2x0x3 + δ0x0 + δ1x1 + δ2x2 + δ3x3 + c3 = 0.

(16)

The system (16) will be our main tool for investigations below. It is a system of
the degree 2, and if one has to solve a certain equation of the form (14), then it is
a good recommendation to pass to (16) and to solve it. But our aim is to investigate
equations of such form in general.

Namely, we wish to investigate possible kinds of shape of the set of all solutions
of (14). Let us do this by means of sections of this set by hyperplanes perpendicular
to the real axis. So, let x0 be fixed, and let us look at the equations of (16) which
represent now sets of points in the usual tree-dimensional space. The first equation
can represent a sphere, or a point, or the empty set. Secondly, one can represent a
plane, or the empty set, or the whole three-dimensional space; it is possible to say
just the same about third and fourth ones. The intersection of the corresponding
four bodies is the section of the set of the solution by the hyperplane. Obviously,
this intersection can be the empty set, or one point, or two points, or a circle, or a
sphere. So, we have obtained the following result:

Proposition 3. Let an equation of the form (14) be given. Let any ξ0 ∈ R be fixed.
Consider the section of the set of all solutions of (14) by a hyperplane x0 = ξ0. Then
this section is or the empty set, or one point, or two points, or a circle, or a sphere.

An interesting question arises whether every from these five possibilities can be
realized for some equation and some section of the set of its solution. It is easy to
get the positive answer for four cases from these five, namely:

Proposition 4. For each from such four types of sets as empty set, one point, two
points, and a sphere there exists an equation of the form (14) and a hyperplane
perpendicular to the real axis, such that the section of the set of all solutions of this
equation by this hyperplane is a set of just the given type.

Proof. Note that a particular case of (14) is

x2 + xa+ bx+ c = 0.(17)

Such equations were investigated in [1] and, according to Theorem 2 in [1], for every
point, for every pair of points and for every sphere perpendicular to the real axis
there exists an equation of the form (17) whose set of solutions is just this point,
this pair of points, or this sphere, respectively. Concerning a pair of points, note
also that since every pair is referred to, one can choose two points from the same
hyperplane perpendicular to the real axis. Now it is understandable that taking a
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corresponding equation and a hyperplane containing the set of its solutions, one
proves the proposition for one point, two points and a sphere. Then taking the
same equation and another hyperplane perpendicular to the real axis, one proves
the proposition for the empty set. �

Therefore only the case of a circle remains unknown and up to now we do not
know the answer.

Another interesting question is how many sections of the same kind can have the
set of solutions of a certain equation of the form (14). We know the answer only
about spheres, namely:

Proposition 5. Let an equation of the form (14) be given, and suppose that there
exists a hyperplane perpendicular to the real axis, such that the section of the set
of all solutions of the equation by this hyperplane is a sphere. Then the section of
this set by every other hyperplane perpendicular to the real axis is not a sphere. In
other words, the number of spheres among our sections is not larger than 1 for each
particular equation.

Proof. Let us recall the system (16). Obviously, for a spherical section to appear it is
necessary for whole the three-dimensional space to be the set of solutions of each from
the latter three equations of the system (treating x1, x2, x3 as the unknowns). Of
course, it may occur only if all the coefficients of the equations equal 0. In particular,
considering the coefficient at x1 from the second equation of (16), we have:

2x0 + β1 = 0,

or, recalling from (15) what is β1,

2x0 +
m∑

�=1

(a(�)
0 b

(�)
0 − a

(�)
1 b

(�)
1 + a

(�)
2 b

(�)
2 + a

(�)
3 b

(�)
3 ) = 0.

Thus

x0 =
1
2

m∑
�=1

(a(�)
0 b

(�)
0 − a

(�)
1 b

(�)
1 + a

(�)
2 b

(�)
2 + a

(�)
3 b

(�)
3 ).

Thus x0 is determined uniquely by the coefficients of the equation. But just x0 de-
termines a hyperplane. So, only one hyperplane can satisfy the necessary conditions
of a spherical section, and the proposition is proved. �
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BADANIE KWADRATOWYCH RÓWNAŃ KWATERNIONOWYCH I

ROZK�LAD NA CZYNNIKI ORAZ PRZEJŚCIE DO UK�LADU
RÓWNAŃ RZECZYWISTYCH

S t r e s z c z e n i e
Sformu�lowano warunki wystarczaja̧ce dla możliwości przekszta�lcenia równania kwater-

nionowego postaci pxqxr − sxt − uxv + w = 0 do postaci (αxβ − a)(γxδ − b) = 0.
Badany jest kszta�lt zbioru rozwia̧zań dowolnego równania kwaternionowego postaci x2 +∑m

�=1 a(�)xb(�) + c = 0 .
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SPIN ALGEBRA IN THE FRACTION-DIMENSIONAL SPACE

Summary

The author shows that in the case when the effective dimension of space is not an integer
and may acquire fractional values, the electron becomes a particle with spin projection
sz = 1/2α, where 0 � α � 1.

The mathematical model of the electron in the magnetic field, according to which
the electron is a particle that has a spin, i.e. a moment of its own, was proposed in
1927 by W. Pauli. To the quantum value, spin s, corresponds the operator of spin ŝ
whose components are expressed by Pauli matrices [1]:

ŝi =
1
2
σi, σiσk = −σkσi, σ2

i = I.(1)

Independently of a concrete representation, the spin algebra meets the following
commutation relations [2]:

[ŝi, ŝj ] = iεijk ŝk, [ŝi, ŝ
2] = 0.(2)

Recently, in applications, geometrical objects with unusual properties have been
gaining more and more attention. An explicit example may be fractals introduced
by B. Mandelbrot [3]. What changes will undergo the properties of a particle with a
spin, if it is moving in the spongy Menger space or on a fuzzy surface? The question
seems reasonable because unusual electric or magnetic properties of a solid body
may sometimes be explained exactly by changes of the effective dimensions of the
space in which free carriers of charge are moving.

What will be the changes the commutation relations (2) undergo in a space of
non-whole dimension?

In the fraction-dimensional space, let us make an infinitesimal turn at the angle
δϕ round the axis z. The operator of such a turn is expressed through the fractional
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spin operator in the form I+ iα(δϕ)αŝα
z±. We will distinguish between the right “+”

and the left “−” turns. Therefore, as a result of the turn, the functions ψ(σ) will
become ψ(σ) + δ±ψ(σ) where

δ±ψ(σ) = iα(δϕ)αŝα
z±ψ(σ), 0 � α � 1,(3)

with α = 1 corresponding to usual rotation round α = 0 to the absence of rotation
and the axis z.

First of all, let us establish the way in which the operator should be understood.
The direct consideration of

ŝα
i+ = (ŝi)α

as a series does not work because this expansion is valid in the neighborhood of I.
The analytical expansion from the region of whole numbers to the region of fractional
values is multivalued. The representation in the form of the series

(ŝi)α = eα ln ŝi

is indefinite because ln ŝi is a relatively convergent series. The best way to understand
(ŝi)α is to consider this expression in the sense of function analysis and to apply the
so-called Balakrishnan formula. However, there is a natural and simplest physical
approach.

We shall use the fact that the spin operator ŝi is expressed through Pauli matrices
(1). It is a well-known fact (see, e.g., [2]) that any function from the linear combi-
nation of Pauli matrices in the form a+ bσ̂ where

σ̂ ≡ {σx, σy, σz} and b ≡ {bx, by, bz}
is again a linear combination of Pauli matrices. From this fact and from the relations
(1) it follows that any function from a linear combination of spin operators will also
be a linear combination of spin operators:

f(a+ bŝ) = A+ Bŝ,(4)

where

A =
1
2

[f(a+ b) + f(a− b)] , B =
b
2b

[f(a+ b) − f(a− b)]

and ±b are the eigenvalues of the operator bŝ. In the case of power function f(ŝi) =
(ŝi)

α it is enough to apply a special case when a = 0 and b = 1. From the relation
(4) it follows that

ŝα
k+ =

(
− i

2

)α [
cos
(πα

2

)
+ 2i sin

(πα
2

)
ŝk

]
, ŝα

k− ≡ (ŝα
k )+ .(5)

Note here that the physical sense is inherent not in the operators ŝα
k±, but their

symmetrized combinations

ŝα
i =

1
2
(
ŝα

i+ + ŝα
i−
)

=
1

2α

[
cos2

(πα
2

)
I + 2 sin2

(πα
2

)
ŝi

]
.(6)

The operators ŝα
i are Hermitian and their eigenvalues are real numbers.
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The relation (6) allows an easy derivation of commutation relations for spin
operators of fractional power:

[ŝα
i , ŝ

α
j ] =

i

22(α−1)
sin4

(πα
2

)
εijk ŝk .(7)

Does this proof depend on a particular matrix representation of spin algebra?
The answer is negative: to proof the commutation relations of spin operators in the
fraction-dimensional space, we did not use any particular representation.

The peculiarity of the spin operator ŝα
i is that its eigenvalue sm exceeds 1/2:

ŝα
i ψ(σ) =

1
2α
ψ(σ) , sm =

1
2α

.(8)

Because the operator ŝα
z for any α has the form aI + bŝz, the spin operator ŝα

z

evidently commutes with the operator ŝ2:

[ŝα
z , ŝ

2] = 0 , ∀α .(9)

To find the eigenvalues of the square operator

(ŝα)2 = (ŝα
x )2 + (ŝα

y )2 + (ŝα
z )2,

let us consider the operators
ŝα
± = ŝα

x ± iŝα
y .

Then the operator

ŝα
−ŝ

α
+ = (ŝα)2 − (ŝα

z )2 + i[ŝα
x , ŝ

α
y ] = (ŝα)2 − Aŝz −B ,(10)

where
A = sin2(πα/2)/22(α−1), B = I/22α.

The effect of operator (10) on the state function with the maximal projection of
spin is trivial and thus allows determining the eigenvalues (sα)2 of the square spin
operator (ŝα)2 :

(sα)2 =
A

2
+B =

1
22α

[
1 + 2 sin2

(πα
2

)]
.(11)

Figure 1 presents the dependencies sm and (sα)2 as a function of the fractional
dimension α. An essential feature is the region α ∈ [α1, α2] in which αi corresponds
to the solution of the equation

22α − 2 sin2
(πα

2

)
= 1 (α1 = 0.5, α2 ≈ 0.6348).

For these values of α, (sα)2 � 1; i.e. the electron turns into a vectorial particle,
which is equivalent to the appearance in the medium of an additional electromag-
netic interaction. In all other cases the electron is not a pure fermion and may be
considered as a particle in a mixed state, which has both fermionic and bosonic
components. As follows from equation (11), the transformation rule under rotation
is the same

ψ(σ)′ = eiσϕψ(σ),

but the value of spin σ in spaces R3 and R3α is different.
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Fig. 1: The eigenvalues of (sα)2 and sm as a function of the fractional dimension α (� = 1).

The above peculiarities of electrons in the fraction-dimensional space may con-
tribute to theory of solid body, theory of superconductivity, the quantum Hall effect,
theory of phase transitions.

Thus, the answer to the question formulated in the beginning of the paper regard-
ing the electron spin in the fraction-dimensional space is as follows: the spin projec-
tion becomes large and the value of spin square has nonmonotonic growth. In partic-
ular, in the Menger sponge case (Hausdorff dimension dM = ln 20/ ln 3 ≈ 2.726833)
α = ln 20/ ln 27 ≈ 0.9089443 and sα

m = 1/2α ≈ 0.5325747, (sα)2 ≈ 0.8393812.
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ALGEBRA SPINÓW
W PRZESTRZENI O WYMIARZE U�LAMKOWYM

S t r e s z c z e n i e
Autor wykazuje, że w przypadku, gdy efektywny wymiar przestrzeni nie jest ca�lkowity

i może przyjmować wartości u�lamkowe, elektron staje siȩ cza̧stka̧, dla której rzut spinu sz

wynosi 1/2α, gdzie 0 ≤ α ≤ 1.
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RANDERS GEOMETRY AND GAUGE THEORIES I
SOLITONS AND COMPLEX GAUGE THEORIES

Summary

The gauge theorems play in physics a role of interpretation of the fundamental theorems

of Emmy Noether concerning, in particular, invariance of action integrals with respect to

some proper groups of transitions. The formalism related to Ka�luża-Klein gauge theories,

natural e.g. for theories unifying electrodynamics and thermodynamics, and the correspond-

ing gauge transformation due to an external field leads, in general, to a Randers metric.

Now, the Randers geometrical approach to gauge theories yields the theory containing soli-

tons of field equations. It is then natural to distinguish static, dynamic, probabilistic, and

quantum Randers spaces including, because of space-time, complex Randers structures.

Finally, we outline the Hurwitz pair description of gauge theories related to solitons.

Introduction

For Randers spaces we refer to [AIM, T]. We also have to summarize some material
of [�L3B, �L5.5] according [I�LS].

Take two real numbers x and y. They satisfy

|xy| = |x| |y|.
Setting f(x, y) = xy, we have |f(x, y)| = |x| |y|. Taking account of the fact that
f is a bilinear mapping f : R × R → R, we proceed as follows. Let En denote
the n-dimensional Euclidean space with the norm ‖ ‖n. If a bilinear mapping f :
En ⊗ Ep → En satisfies

‖f(x, y)‖n = ‖x‖p ‖y‖n,

f is said to satisfy the Hurwitz condition; cf. [H].
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In the case of a pseudoeuclidean space Er,s, r + s = p, ‖x‖p denotes the usual
pseudonorm, but ‖y‖n has to be replaced by the scalar product 〈y, z〉n = yκzT ,
where zT means z transposed, so that the condition becomes

〈f(x, y), f(x, z)〉n = ‖x‖p〈y, z〉n.
It appears that, if κ is diagonalized, it is sufficient to take it either κ = In, In being
the unit matrix of dimension n (euclidean or, differently speaking, elliptic case), or

κ = diag
(
I 1

2 n,−I 1
2 n

)
≡
(
I 1

2 n 0
0 −I 1

2 n

)
(pseudoeuclidean hyperbolic case)

– for p > 1, the n-dimensional space in question is always even-dimensional. If κ
cannot be diagonalized, it is sufficient to take it symplectic:

κ = diag∗
(
I 1

2 n,−I 1
2 n

)
≡
(

0 I 1
2 n

−I 1
2 n 0

)
(pseudoeuclidean symplectic case).

On the other side, a symplectic κ represents also a complex structure.
If f is irreducible, i.e. there exist no subspaces V of En, V �= {0}, En, such that

f |Er,s ⊗ V → V,

the pair (En,Er,s) is called pseudoeclidean (in particular, Euclidean) Hurwitz pair
[�LR2, �LR3]. Since, for p > 1, the n-dimensional space in question is even-dimensional,
it can be complexified. If we suppose that

κjm ∈ C, j,m = 1, 2, . . . , n, and κ = |κjm| is hermitian,

then in the Hurwitz-type condition we have to replace n by 1
2n and suppose that

y, z ∈ C
1
2 n. The corresponding pair is called Hermitian Hurwitz pair [FK, KS, �L2].

The determination of a Hurwitz pair is equivalent to that of a special Clifford
algebra with generators γ1, γ2, . . . , γp−1, In. It appears [H, �LR4] that

n = 2[ 1
2 p+ 1

2 ] for |r − s| ≡ 2, 3, 4, 5, 6 (mod 8),

n = 2[ 1
2 p] for |r − s| ≡ 7, 0, 1 (mod 8).

Moreover, with each Hurwitz pair we can associate a Dirac-type equation. For this
purpose we define the quantization mapping as follows. By replacement of xα by

∂α =
∂

∂xα
, α = 1, 2, . . . , p,

in the mapping f , we obtain a Dirac-type operator

Dn
p =

p−1∑
α=1

Iγα∂α − Iν∂p(1)

which, in the opposite way, can be used for determining the corresponding Hurwitz
pair.
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Finally, we introduce a special complex structure which is deeply connected with
physics. Since

γ2
α = −Iα, γT

α = −γα, α = 1, 2, . . . , p− 1,

we get a graded complex structure

Jx̃ =
p−1∑
α=1

x̃αγα

which we call supercomplex structure with the direction x̃ [�LR2, S�lK]. If we interpret
the mapping f as a multiplication

f(x, y) ≡ x ◦f y,

then, clearly, the endomorphism Ĵx̃ corresponding to Jx̃ plays the role of a Hamil-
tonian with eigenvalues or eigenfunctions x̃:

Ĵx̃y = x̃ ◦f y.(2)

Let us restrict x̃ to a (p−1)-dimensional sphere Sp−1 in Ep. Then, with the notation

Supcom(En,Ep) = {Jx̃ : x̃ ∈ Sp−1} ,
we state what follows:

Remark 1. There exists an element S of SO(p− 1,R) such that

Jx̃ = SJ0S
−1, where J0 = diag∗

(
I 1

2 n,−I 1
2 n

)
.

Example 1. Supcom(E2,E2) = {J0}, Supcom(E4,E3) � S2 � P1.

1. Solitons in the Randersian physics

We start with (cf. [I�LS], p. 84):

Theorem 1. If L, L �= 0, is a Lagrangian in the sense of Finsler, satisfying the
condition:

(α) the function
L = L(ϕA, ϕA

|t , ϕ
A
|x1 , ϕA

|x2 , ϕA
|x3 , ϕA

|x4)

is homogeneous of degree 1 with respect to ϕA
|t , A = 1, 2, . . . , N ;

(β) det[(∂2/∂ϕA
|t∂ϕ

B
|t )L2] �= 0 for A,B = 1, 2, . . . , N ,

then the corresponding Euler-Lagrange equations imply
N∑

A=1

ϕA
|t
∂L
∂ϕA

(
L−

N∑
B=1

∂L
∂ϕB

|t
ϕB
|t

)
− L

4∑
j=1

∂

∂xj

N∑
A=1

ϕA
|t

∂L
∂ϕA

|xj

= 0.
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Proof. Let us multiply the Euler-Lagrange equations for L by L:

L ∂

∂t

(
∂L
∂ϕA

|t

)
+ L

4∑
j=1

∂

∂xj

⎛
⎝ ∂L
∂ϕ

Aj

|x

⎞
⎠− L ∂L

∂ϕA
= 0, A = 1, 2, . . . , N.

Since

∂

∂t

(
L ∂L
∂ϕA

|xj

)
=
∂L
∂t

· ∂L
∂ϕA

|t
+ L ∂

∂t

(
∂L
∂ϕA

|t

)
,

we get

∂

∂t

(
L ∂L
∂ϕ|tA

)
− ∂L
∂t

· ∂L
∂ϕA

|t
+ L

4∑
j=1

∂

∂xj

(
∂L
∂ϕA

|xj

)
− L ∂L

∂ϕA
= 0,

(3)

A = 1, 2, . . . , N.

Introducing the generalized momenta in the sense of Finsler

pA :=
1
2

(
∂/∂ϕA

|t
)
L2
(
ϕA, ϕA

|t , (ϕ
A
|xj )
)
≡ L

(
∂/∂ϕA

|t
)
L,(4)

where
(ϕA

|xj ) = (ϕA
|x1 , ϕA

|x2 , ϕA
|x3 , ϕA

|x4),

and the Hamiltonian in the sense of Finsler

H(ϕA, ϕA
|xj , pA) := L(ϕA, ϕA

|t , (ϕ
A
|xj )) with ϕA

|t = ΛA(ϕA, (ϕA
|yj ), pA),(5)

ΛA being homogeneous of degree 1 with respect to pA, we have
∂L
∂t

· ∂L
∂ϕA

|t
=
∂H
∂t

· pA

H .

In consequence, by (4) we can rewrite (3) in the form

∂pA

∂t
− L ∂L

∂ϕA
− pA

H · ∂H
∂t

+ L
4∑

j=1

∂

∂xj

(
∂L
∂ϕA

|xj

)
= 0.

Next, by

∂H
∂t

=
N∑

B=1

(
∂H
∂ϕB

ϕB
|t +

∂H
∂pB

· ∂pB

∂t
+

∂H
∂ϕB

· ∂
2ϕB

∂xj∂t

)
,

we obtain

∂pA

∂t
=
pA

H
N∑

B=1

(
∂H
∂ϕB

ϕB
|t +

∂H
∂pB

· ∂pB

∂t
+

∂H
∂ϕB

|xj

· ∂
2ϕB

∂xj∂t

)

+L ∂L
∂ϕA

− L
4∑

j=1

∂

∂xj

(
∂L
∂ϕA

|xj

)
= 0, A = 1, 2, . . . , N.
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It is not difficult to check that(
∂/∂ϕA

)L = − (∂/∂ϕA
)H, A = 1, 2, . . . , N.(6)

Hence, by (4)

pA

H
N∑

B=1

∂H
∂ϕB

ϕB
|t =

L
H · ∂L

∂ϕA
|t

N∑
B=1

∂H
∂ϕA

ϕB
|t = − ∂L

∂ϕA
|t

N∑
B=1

∂L
∂ϕA

ϕB
|t .

Yet, the relations (6) have obvious analogues(
∂/∂ϕA

|xj

)
L = −

(
∂/∂ϕA

|xj

)
H, A = 1, 2, . . . , N ; j = 1, 2, 3, 4,(7)

so

∂PA

∂t
= L ∂L

∂ϕA
− ∂L
∂ϕA

|t

N∑
B=1

∂H
∂ϕB

ϕB
|t +

pA

L
N∑

B=1

(
∂H
∂pB

· ∂pB

∂t
− ∂L
∂ϕB

|xj

· ∂
2ϕB

∂xj∂t

)

(8)

−L
4∑

j=1

∂

∂xj

(
∂L
∂ϕA

|xj

)
, A = 1, 2, . . . , N.

By the homogeneity of L, we have
N∑

A=1

ϕA
|tpA =

N∑
A=1

ϕA
|tL

∂L

∂ϕA
|t

= L
N∑

A=1

ϕN
|t
∂L
∂ϕA

|t
= L · L = L2.

Multiplying both sides of (8) by LϕA
t , summing them with respect to A, and applying

the latter relation, we get
N∑

A=1

(
ϕA
|t
∂pA

∂t
− L ∂H

∂pA
· ∂pA

∂t

)
=

N∑
A=1

ϕA
|t
∂L
∂ϕA

(
L −

N∑
B=1

∂L
∂ϕB

|t
ϕB
|t

)

−L
4∑

j=1

N∑
A=1

[
∂L
∂ϕA

|xj

· ∂
2ϕA

∂xj∂t
+ ϕA

|t
∂

∂xj

(
∂L
∂ϕA

|xj

)]
.

It is not difficult to calculate the derivatives ϕA
t :

ϕA
|t = H

(
ϕA, (ϕA

|xj ), pA

) ∂

∂pA
H
(
ϕA, (ϕA

|xj ), pA

)

≡ 1
2

∂

∂pA
H2
(
ϕA, (ϕA

|xj
), pA

)
, A = 1, 2, . . .(9)

≡ 1
2

∂

∂pA
H2
(
ϕA, (ϕA

|xj
), pA

)
, A = 1, 2, . . . , N.

By this we observe that the preceding formula becomes
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N∑
A=1

(
ϕA
|t
∂pA

∂t
− L ∂H

∂pA
· ∂pA

∂t

)
=

N∑
A=1

(
ϕA
|t
∂pA

∂t
−H ∂H

∂pA
· ∂pA

∂t

)

=
N∑

A=1

(
ϕA
|t
∂pA

∂t
− ϕA

|t
∂pA

∂t

)
= 0.

Finally we notice that
4∑

j=1

N∑
A=1

[
∂L
∂ϕA

|xj

· ∂
2ϕA

∂xj∂t
+ ϕA

|t
∂

∂xj

(
∂L
∂ϕA

|xj

)]
=

4∑
j=1

N∑
A=1

∂

∂xj

(
ϕA
|t

∂L
∂ϕA

|xj

)
,

so, indeed we arrive at the assertion of Theorem 1.

Remark 3. In particular, Theorem 1 together with the Finsler version of Emmy
Noether’s theorem [M1] imply the first principle of thermodynamics in the extended
form given, e.g., in [SS1], formula (3.1.8); cf. also [SS2].

Remark 4. Of course, the assertion of Theorem 1 remains true when j = 1, 2, 3, 4 is
formally replaced by j = 1, 2, . . . , n with n = 2, 3, . . . .

Remark 5. In the case N = 1, i.e. when the field is described by only one function
ϕ = ϕ(t, (xj)), the equation given in Theorem 1 reduces to

4∑
j=1

∂

∂xj

(
ϕ|j

∂L
∂ϕ|xj

)
= 0

because, by the homogeneity of L, its first term becomes 0.

Remark 6. If the number of space variables n is equal to 1, let us change the notation
from ϕ to u = u(x, t) and set

ut = (∂/∂t)u(x, t), ux = (∂/∂x)u(x, t).

Then the equation of Remark 5 takes the form

∂

∂x

(
ut
∂L
∂ux

)
= 0, where L = L(u, ut, ux).(10)

The latter equation, equivalent in our case to the Euler-Lagrange equation, is the
1-dimensional equation of motion in the sense of Finsler.

It is natural to ask for which Lagrangian (in the sense of Finsler), the equation
(9) is fulfilled by any function u of the form f(x + ωt) or g(x − ωt), where ω is a
constant (physically, a phase). In this direction we have [SK]:

Theorem 2. A function u = u(x, t) of the form f(x + ωt) or g(x − ωt) with ω

constant is a solution of the equation (10) if and only if the Lagrangian (in the sense
of Finsler) has the form
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L(u, ut, ux) = C(ut/ux) + utD(u),

where C is a constant and D = D(u) is a function of the variable u, provided that
ux �= 0 and (∂/∂ux)L �= 0.

Proof and examples are given, following [DEG, E], in [�L5.5].

2. Complex Randersian physics

Consider the eigenvalue problem Ly = λy for the differential operator

L = −(d2/dx2) + u(x, y).

For an arbitrary function u, λ may depend on t, a deformation parameter. As a
special case we have a deformation which does not change λ, and is called isospectral
deformation. We call λ an isospectral parameter.

Remark 7. Note a formal parallelism between the basic eigenvalue problems related
to the operator L with the isospectral parameter λ and the endomorphism Ĵx̃ cor-
responding to the supercomplex structure Jx̃ with the direction x̃, fixed whenever x̃
ranges over a Stiefel manifold being the (p−1)-dimensional hypersphere determined
by x̃ [�LR1]:

Ly = λy vs. Ĵx̃y = x̃ ◦f y.(11)

From now on, we restrict ourselves to isospectral deformations and obtain an
equation of Heisenberg type. For this purpose we assume that a generator of the
isospectral deformation is given by

yt = Ay,(12)

where A is a differential operator with respect to x. By differentiating the first
relation in (11), we have Lyt + Lty = λyt. hence, by (12) we get (Lt + [L,A])y = 0.
This holds for every eigenvalue λ, so we obtain

Lemma 1. An isospectral deformation L with the generator (11) satisfies

Lt + [L,A] = 0.(13)

The left-hand side of (13) is called the Lax representation of the isospectral de-
formation in (11).

Now, let us note that that ordinary differential operators can be written as

B =
n∑

j=0

bjD
n−j , D0 = 1,
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where bj are functions of x (say) and D = d/dx. We intend to consider pseudo-
differential operators of the form

P =
∞∑

j=−n

u−jD
−j.

Operators in question constitute an algebra A. We choose in it a collection of ele-
ments W that can be expressed as

W =
∞∑

j=0

u−jD
−j , u0 = id;

it forms a group A∗ which makes elements of A invertible. If we choose a space H
on which W operates as the linear envelope of {ekx : k ∈ C∗}, C∗ = C ∪ {∞}, we can
see that

D(ekx) = ekx and D−1(ekx) =
1
k
ekx.

Let us specify L in (11) as a pseudo-differential operator of the form

L = D +
∞∑

j=0

u−jD
−j

and set Ln := Ln−1L. Then

Ln =
∞∑

j=−n

b−jD
−j, bn = 0.

We denote the part of non-negative orders and the part of negative orders by Ln
+

and Ln
−, respectively. If we choose an invertible operator P : H → H , then L is

transformed to L̃ = P−1LP . Hence, by choosing a suitable P , we may obtain some
kind of the normal form of L. Explicitly, if we choose

P (f) = eφf for f ∈ H,

where f is a C∞-function, then we can see that

L̃ = D +
∞∑

j=1

u−jD
−j−1

by choosing a suitable φ and, consequently, we may assume that L is of this form.
Hence

Lemma 2. There is an element W ∈ A∗ such that W−1LW = D.

Now, let t = tn) be a possibly infinite system of parameters. We set L(t) =
WDW−1; it determines an isospectral deformation of D.

Remark 8. Note a formal parallelism between the resolutions (cf. Remark 1):

L̃ = P−1LP, L(t) = WDW−1, and Jx̃ = SJ0S
−1.
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Lemma 1 may be completed by [DJK, L, Mo, S�lK1]:

Theorem 3. The isospectral deformation L(t) of D has a generator of a differential
operator for any tn if and only if

(∂/∂tn)ψ = Ln
+ψ for n = 1, 2, . . . .

Proof and an example are given, following [DJK, S�LK1, SK], in [�L5.4].
Theorem 3 motivates the following

Definition 1. L(t) as given by L(t) = WDW−1 is called the Kadomtsev-Petviashvili
system whenever it satisfies the equations

(∂/∂tn)L+ [L,Ln
+] = 0 for n = 1, 2, . . . .(14)

Then L = L(t) is called a solution of the associated Kadomtsev-Petviashvili system
(14).

3. Complex gauge connections of interacted fields

We are going to show that the associated Kadomtsev-Petviashvili systems (14) in-
clude some Kodaira-Spencer equations [KSp] of complex structures and Wu-Kobaya-
shi connections [Kb] as special cases. By use of these gauge connections we can treat
the interacted fields with the Hurwitz- and Dirac-like equations in relation to the
Fueter equation [F1, F2].

Let G be a finite- or infinite-dimensional Lie group and let A be a vector space
which is a right and left G-module. The adjoint operator Adg, g ∈ G, sends x ∈ A
to gxg−1 ∈ A; it defines an action of G on A. Clearly,

[x, g]x−1 = x = Adgx,

where, as before, [ , ] denotes the commutator.

Definition 2. The pair (A, G) as above with the action {Adg : g ∈ G} is called a
gauge decomposition with the gauge group G whenever there exists a decomposition
A = G ⊕ M which satisfies the following conditions:

(I) AdgG ⊆ G for g ∈ G,

(II) [x, g]g−1 ∈ G for x ∈ M, g ∈ G.

Definition 3. Consider the pair (A, G) as above (as in Definition 2) with the action
{Adg : g ∈ G} and let A = G⊕M be an arbitrary decomposition of A. Then we call

M1(G) =
{
x ∈ M : [x, g]g−1 ∈ G for g ∈ G

}
the set of gauge elements of the gauge group G.

For the examples of notions introduced in Definitions 2 and 3 we refer to [�L5.5].
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Denote next by (zν : ν = 1, 2, . . . , n) a system of co-ordinates in the complex
vector space Cn, and by z̄ν : ν1, 2, . . . , n) – the system of complex conjugate co-
ordinates. We set

∂ν := ∂/∂zν, ∂̄ν := ∂/∂z̄ν, ν = 1, 2, . . . , n.

and, more generally,

∂α∂̄β :=
n∏

ν=1

∂αν
ν ∂̄βν

ν ,

α = (αν , ν = 1, 2, . . . , n),

β = (β̄ν , ν = 1, 2, . . . , n)

with

|α| =
n∑

ν=1

αν , |β| =
n∑

ν=1

β̄ν .

More simply, we may write the differential operator in question as

∂A, where A = (α, β̄), |A| = |α| + |β|.
Then a pseudo-differential operator P can be written as

P =
∑
|A|≥0

uA(z, z̄)∂A

and we set

P =

⎧⎨
⎩P =

∑
|A|≥0

uA(z, z̄)∂A

⎫⎬
⎭ .

In the following we assume that uA are C∞-functions or real-analytic functions of z
and z̄. Obviously, P is an associative algebra with respect to the usual composition
of operators and a Lie algebra. In order to consider a gauge theory of P we set

P∂ :=

⎧⎨
⎩
∑
|A|≥0

uA∂
A ∈ P : A = (α, 0)

⎫⎬
⎭ , Pc

∂ : P � P∂ .

Then we have P = P∂ ⊕ Pc
∂ and distinguish the analytic group of the first kind:

G1
∂ := {g ∈ P∂ : u0 = 1}(15)

and the analytic group of the second kind:

G2
∂ := {g ∈ P∂ : u0 �= 0} .(16)

Consider now the associated Kadomtsev-Petviashvili system (14) related to the
decomposition in question. Thus we have to choose a commuting system of ∂̄ν : ν =
1, 2, . . . , n, namely ∂̄β , β = (β̄ν : ν = 1, 2, . . . , n), and set

Lβ(W ) := W∂̄βW−1, where W = G1
∂ ⊗G2

∂ .(17)

Denote the part of orders in Lβ corresponding to P∂ and Pc
∂ by Lβ

∂ and Lβ

∂̄
, respec-

tively: Lβ = Lβ
∂ +Lβ

∂̄
. Therefore the associated Kadomtsev-Petviashvili system (14)

becomes
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(∂/∂tβ)Lα + [Lα, L
β
∂ ] = 0 for α, β =

(
ᾱν , β̄ν : ν = 1, 2, . . . , n

)
or, equivalently,

(∂/∂tβ)Lα + [Lβ

∂̄
, Lα] = 0 for α, β =

(
ᾱν , β̄ν : ν = 1, 2, . . . , n

)
.(18)

We conclude with

Theorem 4. Any solution of the associated Kadomtsev-Petviashvili system (18) can
be obtained from a solution of the system of equations

(∂/∂tβ)U = ∂̄βU, where β = (β̄ν : ν = 1, 2, . . . , n),(19)

by use of the decomposition U = W−1V , where W ∈ G∂ and V ∈ Gc
∂ , and by setting

(17).

Proof is given, following [I�LS], in [�L5.5].
Now, by (19), we may set tα = z̄α for α = (ᾱν : ν = 1, 2, . . . , n). Hence (18)

becomes

(∂/∂z̄β)Lα +
[
Lβ

∂̄
, Lα

]
= 0 for α, β = (ᾱν , β̄ν : ν = 1, 2, . . . , n).(20)

We are going to show that these equations lead to the Kodaira-Spencer equations
[KSp]. In fact, The Schrödinger equation of (20) is

(∂/∂z̄β)Ψ + Lβ

∂̄
Ψ = 0 for β =

(
β̄ν : ν = 1, 2, . . . , n

)
,(21)

where the correspondence between L and Ψ is determined by the correspondence
between (17) and a relation of the form Ψ = WΨ0.

Definition 3. A solution of the system of equations (20) is called its k-reduction
solution whenever

Lβ = ∂̄β +
k∑

j=0

∑
|σ|=j

uβ
σ∂

σ, where β, σ =
(
β̄ν , σ̄ν : ν = 1, 2, . . . , n

)
.

Definition 4. Let A = G⊕M be a gauge decomposition related to the pairs (A, G).
A mapping Ω : M ⊗G→ G is called a gauge connection whenever

(A) Ω is a linear mapping with respect to the variable x ∈ M for a fixed g ∈ G.
(B) For a fixed x ∈ M and W,W ′ ∈ G, we have

x− Ωx(W ) = Ψ(x− Ωx(W ′))Ψ−1,

where Ψ = WW ′−1 and Ωx(W ) stays for Ω(x,W ).

Definition 5. The mapping Ω̂ from M to G, defined by

Ω̂(x) = W−1
(
[X,W ]W−1 − Ωx(W )W

)
,

is called the connection form of the connection Ω.
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Definition 6. (a) Suppose that A and G in Definition 4 are operators on a Hilbert
space H. By the covariant differentiations of the connection Ω we mean the operator
∇W

x := x− Ωx(W ) acting from H to H .
(b) Then, by the G-invariant covariant differentiation we mean the operator

∇̂x = W−1∇xW or, equivalently,

∇̂xΨ =
[
x+ Ω̂(x)

]
Ψ for Ψ ∈ H .

Now we are ready to state precisely the already announced correspondence the-
orem.

Theorem 5. In case of the analytic group of the first kind (15) any one-reduction
solution of the associated Kadomtsev-Petviashvili system (20) is a solution of the
Kodaira-Spencer equations

(∂/∂z̄β)Ψ +
n∑

j=1

∑
|σ|=j

uβ
σ(∂/∂z̄σ)Ψ = 0

(22)

for β, σ =
(
β̄ν , σ̄ν : ν = 1, 2, . . . , n

)
,

where the correspondence between L and Ψ is determined by the correspondence
between (17) and a relation of the form Ψ = WΨ0.

Proof and an example are given, following [KSp], in [�L5.5].

4. Hurwitz pair description of gauge theories

Theorem 5 shows that solutions of the associated Kadomtsev-Petviashvili system
(20) may lead to a complex structure yielding holomorphic functions. When pro-
ceeding to supercomplex structures we can see, by Remark 1, that when setting

O1
∂ = {W ∈ P∂ : W ∗W = id}(23)

and restricting ourselves to the complex structure implied by (20), we can get the
supercomplex structure

Ω = [∂̄,W ]W−1 with Ω∗ = −Ω.

When applying the above procedure to the Hurwitz- and Dirac-like operators in
question, we can obtain some interacting fields which are similar to anti-self dual
Yang-Mills connections [S�LK1].

We are going to concentrate on the complex analytic gauge theory of the vector
bundle over Cp, p = 2, 3, . . . , and its application to Hurwitz pairs. Let π : E → Cp be
a vector bundle over Cp of rank n. It is assumed to be a G0-bundle, G0 = GL(n,C).
Similarly, set G0 = gL(n,C). Suppose that G and G are of the class C∞ and act
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from Cp to G0 and from Cp to G0, respectively. Let P∂ ⊕ Pc
∂ denote the complex

analytic decomposition as introduced in the preceding section. Let us set

G = H ⊕ M, where H = Pc
∂ ⊗ G and M = P∂ ⊗ G.(24)

Next let

G=
{
g ∈ G : g−1 ∈ G

}
,

G+ =
{
g ∈ H : g−1 ∈ H

}
,(25)

G− =
{
g ∈ M : g−1 ∈ M

}
.

We conclude with

Theorem 6. A zero-reduction solution of the associated Kadomtsev-Petviashvili
system subjected to the condition WW ∗ = id determines the Wu-Kobayashi con-
nection [At] determined itself by

∂̄Ω =
1
2

[Ω,Ω].

Proof is given, following [At, S�LK2], in [�L5.5].

Corollary 1. In the case of a Euclidean Hurwitz pair (En,Ep) with an even p we
take into account

O1
G = {W ∈ G : WW ∗ = id}

and hence Ω∗ = −Ω. Then a holomorphic mapping Ψ gives rise to an interacting
field with a Hurwitz- or Dirac-type operator.

Remark 8. The interacting field in question may be regarded as a realization of an
anti-self dual connection.

Remark 9. A relationship with the Yang-Mills connections [N,T ] is clearly seen.
Indeed, let S4 be the 4-dimensional sphere and let π : E → S4 be an SU(2)-bundle
over S4. Consider an anti-self dual connection of E. Since S4 admits no complex
structure, the essential Penrose’s idea is that these connections can be treated in
terms of complex analysis as follows: We make the Penrose transformation

P3

�
��

�
��
S4

T

��
τ

where T is the twistor space. Then in the diagram
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P
3

τ∗E

�
S4

E

�
�τ

τ∗E becomes an hermitian vector bundle when the connection is anti-self dual. In
this case the complex structure is determined by a pullback of the connection via τ ,
which is the Wu-Kobayashi connection.

In analogy to Penrose twistors one of us discusses in [�L3B], Section B3, eight
types of similar structures introduced in [�LS3-6]:

(i) Hurwitz twistors, determined by a system of
(
5
4

)
= 5 algebraic equations

(Lemma B3 in [�L3B], Case I of Theorem 3.3 in [�L4.3]);

(ii) pseudotwistors and pseudobitwistors, determined by a system of
(
9
4

)
= 126

algebraic equations (Lemma B5 in [�L3B], Case II of Theorem 3.3 in [�L4.3]);

(iii) bitwistors, determined by a system of
(
13
5

)
= 175 algebraic equations (Lem-

ma B.7 in [�L3B], Case III of Theorem 3.3 in [�L4.3]);

(iv) four types of the corresponding “anti-objects”; cf. Fig. B2 in [�L3B] and
Fig. 3.8 in [�L4.3].

All the structures mentioned are related to some Hurwitz pairs. A particular case
of Hurwitz pairs concerns Ka�luża-Klein theories; cf. [�L3.1], Section 1.2, and [�LR4].
In connection with the Ka�luża-Klein gauge theories, Beil [Be1, 2] has shown that
the U(1)-symmetry of the electromagnetic field yields the gauge transformation

Y μ
ν = δμ

ν −B−2[1 − (1 + kB2)
1
2 ]BμBν ,

Y ∗μ
ν = δμ

ν −B−2[1 − (1 + kB2)−
1
2 ]BμBν ,

where
B2 =

∑
α,β

ηα,βB
αBβ ,

ηαβ is the initial base space metric in the Lorentz form, and k is, in general, velocity
dependent. The resulting metric

gμν = ημν + kBμBν

is, in general, Finslerian, even in the case where k is a universal constant related to
the gravitational constant.
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Address: see this issue, p. 59 Institute of Mathematics

Polish Academy of Sciences

Presented by Julian �Lawrynowicz at the Session of the Mathematical-Physical Com-
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GEOMETRIA RANDERSA I TEORIE CECHOWANIA I
SOLITONY I ZESPOLONE TEORIE CECHOWANIA

S t r e s z c z e n i e
Twierdzenia o cechowaniu odgrywaja̧ w fizyce rolȩ interpretacyjna̧ dla fundamentalnych

twierdzeń Emmy Noether dotycza̧cych, w szczególności, niezmienniczości ca�lki dzia�lania
ze wzglȩdu na pewne w�laściwe grupy transformacji. Formalizm zwia̧zany z teoriami ce-
chowania Ka�luży-Kleina, naturalny np. w teoriach unifikacji elektrodynamiki i termody-
namiki oraz odpowiednia transformacja cechowania wynikaja̧ca z istnienia i postaci pola
zewnȩtrznego, prowadzi na ogó�l do metryki Randersa. Z kolei geometryczne podej́scie Ran-
dersa do wystȩpuja̧cych teorii cechowania prowadzi do teorii pola zawieraja̧cej solitony
jako rozwia̧zania równań pola. Jest zatem rzecza̧ naturalna̧ wyróżnienie statycznych, dy-
namicznych, probabilistycznych i kwantowych przestrzeni Randersa w�la̧czaja̧cych, z uwagi
na czasoprzestrzeń, zespolone struktury Randersa. Wreszcie, szkicujemy przy użyciu par
Hurwitza teorie cechowania zwia̧zane z solitonami.
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RANDERS GEOMETRY AND GAUGE THEORIES II

RANDERS AND KA�LUŻA-KLEIN GAUGE THEORIES, SELF-DUALITY

AND HOMOGENEITY

Summary

Continuing the first part of the paper (this issue, the preceding paper), especially the

Hurwitz pair description of gauge theories related to solitons, the totality of dualities gen-

erated by the generalized Hurwitz problem is shown to contain five generations of the

Ka�luża-Klein dualities. Next, following G. Zet and V. Manta (2003), we observe that the

gauge theories are usually formulated in terms of potentials Aα
μ(x), where α = 1, 2, . . . , m

(m is the dimension of the gauge group) and μ = 0, 1, 2, 3. In the Lagrangian formalism

equations of the gauge fields Aα
μ(x) are of second order. To simplify the search for solu-

tions of the field equations it is useful to solve equations of the first order. The self-duality

equations are differential equations of the first order and it is easier to investigate the solu-

tions for different particular configurations of the gauge fields and of space-times. Here we

have to remember that one of the most important properties of the self-duality equations

is that they imply the Yang-Mills field equations. We conclude with A. Sandovici (2003)

implications of homogeneity in R. Miron’s sense in gauge theories of the second order.

5. Five generations of the Ka�luża-Klein dualities

Following [�LKS] we are going to show that the totality of dualities generated by the
generalized Hurwitz problem contains exactly five generations of the Ka�luża-Klein
dualities.

Continuing considerations of [�L3A, �L3B] consider a pair (V, S) of real vector
spaces V and S, equipped with scalar products (a, b)s �→ aηbT , a, b ∈ S, and
( , )V = ( , ), and a multiplication
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a · fk :=
∑

α

∑
j

cAjαa
αf j

k , fk ∈ V, k = 1, 2; n = dimV,

η := diag(1, . . . , 1︸ ︷︷ ︸
r+1 times

,−1, . . . ,−1︸ ︷︷ ︸
s times

), r + 1 + s = p = dimS,(26)

satisfying, for all fk ∈ V, k = 1, 2, 3; a, b ∈ S, γ ∈ R, the conditions

(f1, f2) ∈ R, (γf1, f2) = γ(f1, f2), (f1, f2 + f3) = (f1, f2) + (f2, f3);

either (f2, f1) = (f1, f2) for all f1, f2,

or = −(f1, f2) for all f1, f2;

γa · f1 = a · γf1 = γ(a · f1), (a+ b) · f1 = a · f1 + bf2,

a · (f1 + f2) = a · f1 + a · f2

(a · f1, a · f2) =

[
r∑

α=1

(aα)2 −
p∑

α=r+1

(aα)2
]

(f1, f2).

The pair (V, S) is said to be reducible whenever there are

1◦ real vector subspaces V1 and V2 of V , {0} �= V1 �= V2 �= V , and
2◦ real vector subspaces V3 and V4 of V, V3 ∩ V4 �= {0},

such that [S × V1] ⊂ V3 and [S × V2] ⊂ V4. The pair (V, S) is called irreducible
whenever it is not reducible.

An irreducible pair (V, S) is called a pseudo-euclidean Hurwitz pair [�LR1]. Con-
sider now the real n× n-matrices

Cα :=
[
cAjα

]
, Cα := κCT

α κ
P−1, where f1 × fT

2 = (f1, f2), f1, f2 ∈ V.

We can define purely imaginary n× n-matrices γα by

Cα = IγαCt, t fixed, t ∈ {1, . . . , p}, α �= t,(27)

where i denotes the imaginary unit. It appears that γα are generators of a real
Clifford algebra C(r,s) chosen in the (imaginary) Maiorana representation. Recall
that the real (resp. imaginary) Maiorana representation of a Clifford algebra C(r,s)

is defined by the choice of its generators as real (resp. purely imaginary) matrices.
Let (V, S) be a pseudo-euclidean Hurwitz pair with the scalar product of S given

by the matrix (26). Choose t ∈ {1, . . . , p}. It can be proved [�LPoR] that then the
equations (27) and
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CtCt = ηttIn, t fixed, t ∈ {1, . . . , p};

γα = −γα, reγα = 0, α = 1, . . . , p; α �= t;

{γα, γβ} := γαγβ + γβγα = 2η̂αβIn, α, β = 1, . . . , p; α, β �= t;

η̂α,β := ηαβ/ηtt, ηtt = 1 or − 1, α, β = 1, . . . , p;α, β �= t,

where In stands for the identity n×n-matrix, define a Clifford algebra C(r,s), chosen
in the imaginary Maiorana representation.

(I.1) By a further change of basis these generators can be chosen as antisymmetric
or symmetric according to η̂ = 1 or −1.

(I.2) The integers r, s satisfy (31) if ηtt = 1 and

η := diag(1, . . . , 1︸ ︷︷ ︸
s times

,−1, . . . ,−1︸ ︷︷ ︸
r+1 times

), s+ r + 1 = p = dimS, if ηtt = −1.

Thus two Clifford algebras are obtained unless η is positive definite, in which case
only one Clifford algebra is obtained.

(I.3) Further, if ηtt = 1, then via a change of basis one may assume Ct = In. If
ηtt = −1, then via a change of basis one may assume Cr = In for an arbitrary r �= t

so that Ct = −Iγr.

(II) Let C(r,s) be a Clifford algebra generated by the matrices in the imaginary
Maiorana representation. Then there are exactly two pseudo-euclidean Hurwitz pairs
(V1, S1) and (V2, S2) which give rise to C(r,s) via the process described above.

We are interested in determining all the Ka�luża-Klein dualities defined as dual-
ities, where at least one sk is 1 or at least one rk is 0, k = 1, 2,. Let (V, S) be a
Hurwitz pair which will thereafter be denoted by (r+ 1, s;κ). Consider the sequence
of matrices

γ̌α = γα, α = 1, . . . , r; γ̂β = γr+β , β = 1, . . . , s,

and, further, the real matrices

A = (−1)rγ̌1γ̌2 . . . γ̌r, B = (−1)sγ̂1γ̂2 . . . γ̂s.

If r = −1, 0, we set A = In; if s = 0 we set B = In.
Consider, in particular, the cases where each irreducible representation of C(r,s)

can be embedded in an irreducible representation of either C(r+1,s) with generators
γ1, . . . , γr+1+s or C(r,s+1) with γ1, . . . , γr+s+1, or C(r+1,s) and then of C(r+2,s) with
γ1, . . . , γr+2+s. Then the corresponding sequences of matrices γ̌α, γ̂β can naturally
be modified as follows: either

γ̌α = γα, α = 1, . . . , r + 1; γ̂β = γr+1+β , β = 1, . . . , s;

or
γ̌α = γα, α = 1, . . . , r; γ̂β = γs+β , β = 1, . . . , s+ 1;
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or

γ̌α = γα, α = 1, . . . , r + 2; γ̂β = γr+2+β , β = 1, . . . , s;

or

γ̌α = γα, α = 1, . . . , r; γ̂β = γr+β , β = 1, . . . , s+ 2,

respectively. We arrive [�LKS] at the following result; cf. [�LKW, K�LS, MY, S, GSW]
for physical motivation: There are exactly five generations of the Ka�luża-Klein du-
alities (s – symmetric, a – antisymmetric; � = 0, 1, 2, . . . ):

I. Strict Ka�luża-Klein generation

(8�+ 4, 1;A)s � (1, 8�+ 4; iAγ̌1)a

��
(8�+ 4, 1; iBγ̂2)a � (1, 8�+ 4;B)s

(1, 8�+ 4, 1; iAγ̌1)a � (8�+ 4;A)s

��
(1, 8�+ 4;B)s � (8�+ 4, 1; iBγ̌2)a

II. The exciton generation

(1, 8�+ 6;Bγ̂8�+6γ̂8�+7)s � (8�+ 6, 1;A)a

��
(1, 8�+ 6;B)a � (8�+ 6, 1;Aγ̌8�+7γ̌8�+8)s

(8�+ 6, 1;A)a � (1, 8�+ 6;Bγ̌8�+7γ̌8�+8)s

��
(8�+ 6, 1;Aγ̌8�+6γ̌8�+7)s � (1, 8�+ 6;B)a

III. The Yang-Mills generation

(8�+ 4, 0;A)s � (1, 8�+ 3; iAγ̌1)a

��
(1, 8�+ 3; iBγ̂1)a � (8�+ 4, 0;B)s

(8�+ 3, 1; iAγ̌2)a � (0, 8�+ 4;A)s

��
(0, 8�+ 4;B)s � (8�+ 3, 1; iBγ̂2)a
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IV. The extended octonion generation

(1, 8�+ 7; iAγ̌8�+7)s � (8�+ 6, 2;B)a

��
(8�+ 6, 2;A)a � (1, 8�+ 7; iBγ̌8�+8)s

(2, 8�+ 6;A)a � (8�+ 7; iBγ̂8�+7)s

��
(8�+ 7, 1; iAγ̌8�+7)s � (2, 8�+ 6;B)a

Va. The Neveu-Schwarz generation

(8�+ 4, 3;A)s � (1, 8�+ 2;B)a

��
(8�+ 2, 1;A)a � (3, 8�+ 4;B)s

Vb. The Penorose generation

(8�+ 10, 3;A)s � (1, 8�+ 8;B)s

��
(8�+ 8, 1;A)s � (3, 8�+ 10;B)a.

In all the cases listed with superscript s the solution to the problem is hyperbolic
except for

(8�+ 4, 0;A)s, (8�+ 4, 0;A)s, (0, 8�+ 4;A)s, (0, 8�+ 4;B)s,

where the solution is elliptic. In all the cases listed with superscript a the solution
is symplectic. The basis of the space V in any pseudo-euclidean Hurwitz pair in
question can be chosen so that we have one of the following possibilities: κ = In in
the elliptic case,

κ =

(
I 1

2 n 0 1
2 n

0 1
2 n −I 1

2 n

)
in the
hyperbolic case,

κ =

(
0 1

2 n I 1
2 n

−I 1
2 n 0 1

2 n

)
in the
symplectic case,

where 0 1
2 n and I 1

2 n stand for the zero and unit 1
2n× 1

2n matrices, respectively.

6. Self-duality equations for gauge theories

Following Zet and Manta [ZM] we consider a particular form of spherically gauge
fields of the Poincaré group. For ea

μ gauge fields interpreted as tetrads and ωab
μ being

the spin connection (Ricci rotation coefficients) we may take
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e0μ = A(A, 0, 0, 0), e1μ = (0, 1/r2A, 0, 0), e2μ = (0, 0, rC, 0), e3μ = (0, 0, 0, rC sinϑ)

and

ω01
μ = (U, 0, 0, 0), ω02

μ = ω03
μ = ω12

μ = ω13
μ = (0, 0, 0, 0), ω23

μ = (iV, 0, 0, cosϑ),

where A,C,U and V are functions of the 3D radius r only. The non-zero components
F a

μν of the torsion tensor and, respectively, F ab
μν of the curvature tensor are:

F 0
01 = −r

2AA′ + U

r2A
, F 2

03 = −irCV sinϑ, F 2
12 = C + rC′,

F 3
02 = irCV, F 3

13 = (C + rC′) sinϑ,

F 01
01 = −U ′, F 23

01 = −iV ′, F 23
23 = − sinϑ,

(28)

where A′, C′, U ′, V ′ denote the derivatives with respect to the variable r.
In order to obtain a self-dual model, following [F], the dual tensor

∗Fμν =
1
2
√−gεμνρσF

ρσ

is defined, where g is the metric, Fμν is the tensor of gauge fields (Fμν = FA
μνXA), ∗

is the Hodge star, and εμνρσ is the Levi-Civita symbol of rank 4 with ε = 1. One
calculates:

∗F a
μν =

1
2
√−gεμνρσF

aρσ, ∗F ab
μν =

1
2
√−gεμνρσF

abρσ ;

∗F 0
23 =

r2AA′ + U

A
sinϑ, ∗F 2

03 = (C + rC′) sinϑ, ∗F 2
12 = irCV,

∗F 3
02 = −C − rC′, ∗F 3

13 = irCU sinϑ,

∗F 01
23 = r2U ′ sinϑ, ∗F 23

01 = −1/r2, ∗F 23
23 = ir2V ′ sinϑ.

(29)

The Yang-Mills equations are solved by gauge fields satisfying the self-duality con-
dition ∗Fμν = iFμν , and hence

∗F a
μν = iF a

μν , ∗F ab
μν = iF ab

μν .(30)

From the system (28)–(30) one obtains four independent equations

A′ + U/r2A = 0, rC′ + (1 − rV )C = 0,(31)

U ′ = 0, V ′ = −1/r2.(32)

Equations (31) and (32) are self-duality equations on the Minkowski space-time
endowed with spherical symmetry and with the Poincaré groups as gauge group.
Zet and Manta [ZM] stress that these equations are of the first order unlike the
Yang-Mills equations which are of the second order. Thus the search of solutions is
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now easier especially because for the Minkowski space-time solutions to self-duality
equations are automatically solutions to the Yang-Mills equations.

Example 1 [ZM]. We shall find exact solutions with spherical symmetry for the field
equations (31) and (32). Integration of (32) gives

U = α, V (r) = 1/r + β, α and β being constants of integration.

Hence, by the second equation in (30),

A(r) =
√
a+ 2α/r, C(r) = beβr, a and b being constants of integration.

The corresponding gauge potentials ea
μ and ωab

μν read:

e0μ =
(√

a+ 2α/r, 0, 0, 0
)
, e1μ =

(
0, 1/r2

√
a+ 2α/r, 0, 0

)
,

e2μ =
(
0, 0, breβr, 0

)
, e3μ =

(
0, 0, 0, breβr sinϑ

)
and

a01
μ = (α, 0, 0, 0), ω02

μ = ω03
μ = ω12

μ = ω13
μ = (0, 0, 0, 0),

ω23
μ = (i(1/r + β), 0, 0, cosϑ) .

Replacing the metric g by g̃ given by g̃μν = ea
μe

b
νηαβ , we get the following non-zero

metric coefficients:

g̃00 = a+
2α
r
, g̃11 =

1
r4(a+ 2α/r)

,

g̃22 = b2r2e2βr, g̃33 = b2r2e3βr sin2 ϑ.

For the corresponding line element dσ we obtain

dσ2 =
(
a+

2α
r

)
dt2 − 1

r4(a+ 2α/r)
dr2 − b2r2e2βr

(
dϑ2 + sin2 ϑdϕ2

)
.

7. Homogeneity vs. gauge theories of the second order

The role of homogeneity in gauge theories related to Randers metrics was recently
brought to attention by Miron [M1, 2] in the form of studying the homogeneous lift to
tangent bundle of a Finsler (in particular, Randers) metric. The implications of such
homogeneity in gauge theories of the second order were studied in detail by Sandovici
[Sa]. In order to deal with really generalized Einstein-Yang-Mills equations with a
wide range of applicability he introduces the following complete gauge invariant
Lagrangian:

L0 =
17∑

j=1

njLj, all nj ∈ R,

where, in standard notation, the gauge invariant Lagrangians L1, L2, . . . , L17 read:
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L1 =
(2)

T i
jk ·

(2)

T jk
i , L2 =

(3)

T i
jk ·

(3)

T jk
i , L3 =

(1)

P i
jk ·

(1)

P jk
i ,

L4 =
(2)

P i
jk ·

(2)

P jk
i , L5 =

(3)

P i
jk ·

(3)

P j
ki, L6 =

(2)

Qi
jk ·

(2)

Qj
ki,

L7 =
(3)

Qi
jk ·

(3)

Qjk
i , L8 =

(3)

Si
jk ·

(3)

P jk
i , L9 =

(3)

V i
jk ·

(3)

V jk
i ,

L10 =
(1)

Ri
hjk ·

(1)

Rhjk
i , L11 =

(2)

Ri
hjk ·

(2)

Rh
jki, L12 =

(1)

P i
hjk ·

(1)

P h
jki,

L13 =
(1)

P i
hjk ·

(1)

P hjk
i , L14 =

(1)

Qi
hjk ·

(1)

Qhjk
i , L15 =

(2)

Qi
hjk ·

(2)

Qhjk
i ,

L16 =
(1)

Si
hjk ·

(1)

Sh
jki, L17 =

(2)

Si
hjk ·

(2)

Shjk
i .

The quoted Author states that the generalized Einstein-Yang-Mills equations,
corresponding to L0 and to generalized gauge fields Q ∈ {Xj

i , Y
j
i , γ

i
jk, θ

i
jk,∇i

jk}, are
expressed by the relation

∂L0

∂Q
−

(h)i

Q|i −
2∑

α=1

(Vα)i

Q(α)
|i

+
(h)

Am ·
(h)m

Q +
2∑

α=1

(Vα)

Am ·
(Vα)m

Q = 0,

where
(h)

Am = 3γi
mi − n

α′

α
Xt

my
(1)
t +

δXt
m

δy(1)i
+
δ
[
(Y t

p − γi
p0)Xp

m

]
δy(2)i

− 1
G

· δG

δXm
,

(V1)

Am = n
β′

β
y(1)

m +
δXt

m

δy(2)i
− 1
G

· δG

δy(1)m
,

(V2)

Am = − 1
G

· δG

δy(2)m
.
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[�L4.3] —, Quaternions and fractals vs. Finslerian geometry. 3. Graded fractal bundles re-
lated to quaternionic structure, ibid. 55 Sér. Rech. Déform. 48 (2005), 65–82.
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�Lódź Branch, Banacha 22, PL-90-238 �Lódź
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GEOMETRIA RANDERSA I TEORIE CECHOWANIA II

TEORIE CECHOWANIA RANDERSA I KA�LUŻY-KLEINA,

SAMODUALNOŚĆ I JEDNORODNOŚĆ

S t r e s z c z e n i e
W ramach kontynuacji pierwszej czȩści pracy (obecny wolumen, poprzedni artyku�l),

a szczególnie w ramach opisu przy użyciu par Hurwitza teorii cechowania zwia̧zanych
z solitonami, wskazujemy na fakt, że zbiór dualności generowanych przez uogólnione za-
gadnienie Hurwitza zawiera piȩć generacji dualności Ka�luży-Kleina. Nastȩpnie, ida̧c za
G. Zetem i V. Manta̧ (2003) zauważamy, że teorie cechowania sa̧ zwykle formu�lowane w ter-
minach potencja�lów Aα

μ(x), gdzie α = 1, 2, . . . , m (m jest wymiarem grupy cechowa-
nia) oraz μ = 0, 1, 2, 3. W formalizmie lagranżianów równania pól cechowania Aα

μ(x)
sa̧ równaniami drugiego rzȩdu. Aby uprościć poszukiwanie rozwia̧zań równań pola, do-
godne jest rozwia̧zywanie równań pierwszego rzȩdu. W�laśnie równania samodualności sa̧
równaniami różniczkowymi pierwszego rzȩdu i w oparciu o nie �latwiej jest rozważać roz-
wia̧zania dla rozmaitych konfiguracji szczególnych pól cechowania i czasoprzestrzni. Musimy
tu pamiȩtać, że jedna̧ z najważniejszych w�lasności równań samodualności jest wynikanie
sta̧d równań pola Yanga-Millsa. Pracȩ kończy dyskusja wniosków A. Sandovivi (2003) z jed-
norodności w sensie Mirona teorii cechowania drugiego rzȩdu.



PL ISSN 0459-6854

B U L L E T I N
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ANALYSIS OF A FRICTIONAL CONTACT PROBLEM
WITH ADHESION FOR NONLINEAR ELASTIC MATERIALS I
PROBLEM FORMULATION, EXISTENCE AND UNIQUENESS

Summary

We consider a mathematical model which describes a contact problem between a nonlin-
ear elastic body and a foundation. The contact is frictional and is modelled with Signorini’s
conditions and the associated nonlocal friction law in which the adhesion of contact sur-
faces is taken into account. The evolution of the bonding field is discribed by a first order
differential equation. We provide a variational formulation of the mechanical problem and
prove an existence and uniqueness result of the weak solution if the coefficient of fric-
tion is sufficiently small. The proofs are based on arguments of time-dependent variational
inequalities, differential equations and the Banach fixed point theorems.

1. Introduction

Contact problems involving deformable bodies are quite frequent in industry as well
as in daily life and play an important role in structural and mechanical systems.
Because of the importance of this process a considerable effort has been made in
its modelling and numerical simulations. A first study of frictional contact problems
within the framework of variational inequalities was made in [7]. The mathematical,
mechanical and numerical state of the art can be found in [15]. The frictionless
contact problem with adhesion for nonlinear elastic materials was studied in [21].
In this paper we deal with the study of a quasistatic unilateral contact problem
with nonlocal friction law in which the adhesion of contact surfaces is taken into
account between a nonlinear elastic body and a foundation. Models for dynamic or
quasistatic process of frictionless adhesive contact between a deformable body and a
foundation have been studied in [3, 4, 11, 19]. In [2] the unilateral quasistatic contact
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problem with friction and adhesion was studied and an existence result for a friction
coefficient small enough was established. As in [10, 11] we use the bonding field as
an additional state variable β, defined on the contact surface of the boundary. The
variable is restricted to values 0 ≤ β ≤ 1, when β = 0 all the bonds are severed and
there are no active bonds; when β = 1 all the bonds are active; when 0 < β < 1
it measures the fraction of active bonds and partial adhesion takes place. We refer
the reader to the extensive bibliography on the subject in [14–18]. In this work we
provide the variational formulation of the mechanical problem for which we prove
the existence of a unique weak solution if the coefficient of friction is sufficiently
small, and obtain a partial regularity result for the solution.

The paper is structured as follows. In Section 2 we present some notations and
give the variational formulation. In Section 3 we state and prove our main existence
and uniqueness result, Theorem 2.1. In Section 4 we consider a sequence of penalized
and regularized problems which have at least one solution. The proofs are based on
a result on pseudomonotone operators. Using compactness properties, the solution
of the original model is obtained by passing to the limit as the penalization and
regularization parameter converges to zero.

2. Problem statement and variational formulation

Let Ω ⊂ Rd; (d = 2, 3), be the domain initially occupied by an elastic body. Ω is
supposed to be open, bounded, with a sufficiently regular boundary Γ. Γ is parti-
tioned into three parts Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄3 where Γ1,Γ2,Γ3 are disjoint open sets and
meas Γ1 > 0. The body is acted upon by a volume force of density ϕ1 on Ω and a
surface traction of density ϕ2 on Γ2. On Γ3 the body is in adhesive frictional contact
with a foundation.

Thus, the classical formulation of the mechanical problem is written as follows.

Problem P1. Find a displacement field

u : Ω × [0, T ] → Rd

and a bonding field
β : Γ3 × [0, T ] → [0, 1]

such that

div σ + ϕ1 = 0 in Ω × (0, T ) ,(2.1)

σ = Fε (u) in Ω × (0, T ) ,(2.2)

u = 0 on Γ1 × (0, T ) ,(2.3)

σν = ϕ2 on Γ2 × (0, T ) ,(2.4)

uν ≤ 0, σν − cνβ
2Rν (uν) ≤ 0,

(
σν − cνβ

2Rν (uν)
)
uν = 0 on Γ3 × (0, T ) ,(2.5)
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣στ + cτβ
2Rτ (uτ )

∣∣ ≤ μ |R∗ (σν (u))| ,
∣∣στ + cτβ

2Rτ (uτ )
∣∣ < μ |R∗ (σν (u))| =⇒ uτ = 0,

∣∣στ + cτβ
2Rτ (uτ )

∣∣ = μ |R∗ (σν (u))| =⇒

∃λ ≥ 0 s.t. uτ = −λ (στ + cτβ
2Rτ (uτ )

)
,

on Γ3 × (0, T ) ,(2.6)

β̇ = −
[
β
(
cν (Rν (uν))2 + cτ (|Rτ (uτ )|)2

)
− εa

]
+

on Γ3 × (0, T ) ,(2.7)

β (0) = β0 on Γ3.(2.8)

Equation (2.1) represents the equilibrium equation. Equation (2.2) represents
the elastic constitutive law of the material in which F is a given function and ε (u)
denotes the small strain tensor; (2.3) and (2.4) are the displacement and traction
boundary conditions, respectively, in which ν denotes the unit outward normal vector
on Γ and σν represents the Cauchy stress vector. Condition (2.5) represents the uni-
lateral contact with adhesion. Conditions (2.6) represent a nonlocal frictional contact
with adhesion and uτ is the tangential displacement on the boundary. The tangen-
tial shear cannot exceed the maximal frictional resistance μ |R∗ (σν (u))|. Then, if
the strict inequality is satisfied, the surface adheres to the foundation and is in
the so-called stick state, and when equality is satisfied there is relative sliding, the
so-called slip state. Here R∗ is a compact regularization operator (see [6]) and the pa-
rameters cν , cτ and εa are given adhesion coefficients which may depend on x ∈ Γ3.
As in [20], Rν , Rτ are truncation operators defined by

Rν (s) =

⎧⎨
⎩

L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0

Rτ (v) =

⎧⎨
⎩

v if |v| ≤ L,

L
v

|v| if |v| > L ,

where L > 0 is a characteristic length of the bonds. Equation (2.7) represents the
ordinary differential equation which describes the evolution of the bonding field and
it was already used in [20] where [s]+ = max (s, 0) ∀s ∈ R. Since β̇ ≤ 0 on Γ3×(0, T ),
once debonding occurs, bonding cannot be reestablished. Also we wish to make it
clear that from [13] it follows that the model does not allow for complete debonding
field in finite time. Finally, (2.8) is the initial condition, in which β0 denotes the
initial bonding field. In (2.7) a dot above a variable represents its derivative with
respect to time.

We recall that the inner products and the corresponding norms on Rd and Sd

are given by

u.v = uivi, |v| = (v.v)
1
2 ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)
1
2 ∀σ, τ ∈ Sd,

where Sd is the space of second order symmetric tensors on Rd (d = 2, 3). Hereafter,
the indices i and j run between 1 and d and the summation convention over repeated
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indices is adopted. Now, to proceed with the variational formulation, we need the
following function spaces:

H =
(
L2 (Ω)

)d , H1 =
(
H1 (Ω)

)d , Q =
{
τ = (τij) ; τij = τji ∈ L2 (Ω)

}
,

Q1 = {σ ∈ Q; div σ ∈ H} .
Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

〈u, v〉H =
∫

Ω

uividx, 〈σ, τ〉Q =
∫

Ω

σijτijdx.

The small strain tensor is

ε (u) = (εij (u)) =
1
2

(ui,j + uj,i) , i,j = {1, ..., d} ;

div σ = (σij,j) is the divergence of σ. For every element v ∈ H1 we denote by vν

and vτ the normal and the tangential components of v on the boundary Γ given by

vν = v.ν, vτ = v − vνν.

Similary, for a regular tensor field σ ∈ Q1, we define its normal and tangential
components by

σν = (σν) .ν, στ = σν − σνν

and we recall that the following Green’s formula holds:

〈σ, ε (v)〉Q + 〈div σ, v〉H =
∫

Γ

σν.vda ∀v ∈ H1,

where da is the surface measure element. Let V be the closed subspace of H1 defined
by

V = {v ∈ H1 : v = 0 on Γ1} ,
and let K the set of admissible displacements of V defined by

K = {v ∈ V : vν ≤ 0 a.e. on Γ3} .
Since meas Γ1 > 0, the following Korn’s inequality holds [7]:

‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V,(2.7)

where the constant cΩ > 0 depends only on Ω and Γ1. We equip V with the inner
product

〈u, v〉V = 〈ε (u) , ε (v)〉Q
and ‖.‖V is the associated norm. It follows from Korn’s inequality (2.9) that the
norms ‖.‖H1

and ‖.‖V are equivalent on V. Then (V, ‖.‖V ) is a real Hilbert space.
Moreover by Sobolev’s trace theorem, there exists dΩ > 0 which depends only on
the domain Ω, Γ1 and Γ3 such that

‖v‖(L2(Γ3))
d ≤ dΩ ‖v‖V ∀v ∈ V.(2.8)
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For p ∈ [1,∞], we use the standard norm of Lp (0, T ;V ). We also use the Sobolev
space W 1,∞ (0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ) .

For every real Banach space (X, ‖.‖X) and T > 0 we use the notation C ([0, T ] ;X)
for the space of continuous functions from [0, T ] to X ; recall that C ([0, T ] ;X) is a
real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x (t)‖X .

We suppose that the body forces and surface tractions have the regularity

ϕ1 ∈W 1,∞ (0, T ;H) , ϕ2 ∈W 1,∞
(

0, T ;
(
L2 (Γ2)

)d)
(2.9)

and we denote by f (t) the element of V defined by

〈f (t) , v〉V =
∫

Ω

ϕ1 (t) .vdx +
∫

Γ2

ϕ2 (t) .vda ∀v ∈ V , for t ∈ [0, T ] .(2.10)

Using (2.11) and (2.12) yield

f ∈W 1,∞ (0, T ;V ) .

Let

H
1
2 (Γ3) =

{
w |Γ3 : w ∈ H

1
2 (Γ) , w = 0 on Γ1

}
equipped with the norm ofH

1
2 (Γ). 〈., .〉 shall denote the duality pairing onH

1
2 (Γ3)×

H− 1
2 (Γ3). Before we start with the variational formulation of problem P1 let us state

in which sense the duality pairing 〈., .〉 is taken.
For σ ∈ Q1, if σν ∈ (L2 (Γ2)

)d in the sense of distributions, i-e. ∃s ∈ (L2 (Γ2)
)d

such that

〈σν, ϕ〉H′ (Γ)×H(Γ) =
∫

Γ2

s.ϕda ∀ϕ ∈ (C∞
0 (Γ2))d ,

where

H (Γ) =
(
H

1
2 (Γ)

)d

and H
′
(Γ) =

(
H− 1

2 (Γ)
)d

,

we define the normal stress σν on Γ3 as follows:⎧⎪⎨
⎪⎩

∀w ∈ H
1
2 (Γ3) :

〈σν , w〉 = 〈σ, ε (v)〉Q + 〈div σ, v〉H − ∫Γ2
s.vda

∀v ∈ V ; vν = w and vτ = 0 on Γ3.
(2.11)

We assume that R∗ : H
− 1

2 (Γ3) → L2 (Γ3) is a linear compact mapping. Now, in the
study of the mechanical problem P1 we suppose that the operator F satisfies the
following assumptions:
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(a) there exists M > 0 such that
|F (x, ε1) − F (x, ε2)| ≤M |ε1 − ε2| ,
for all ε1, ε2 in Sd, for a.e. x in Ω;

(b) there exists m > 0 such that
(F (x, ε1) − F (x, ε2)) . (ε1 − ε2) ≥ m |ε1 − ε2|2 ,
for all ε1, ε2 in Sd, for a.e. x in Ω;

(c) the mapping x→ F (x, ε) is Lebesgue measurable on Ω,
for any ε in Sd;

(d) F (x, 0) = 0 for a.e. x in Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

As in [18] we suppose that the adhesion coefficients cν , cτ and εa satisfy the condi-
tions

cν , cτ ∈ L∞ (Γ3) , εa ∈ L∞ (Γ3) , cν , cτ , εa ≥ 0 a.e. on Γ3.(2.13)

μ is a coefficient of friction and it satisfies

μ ∈ L∞ (Γ3) and μ ≥ 0 a.e. on Γ3.(2.14)

We need the following set for the bonding fields,

B =
{
β ∈ L∞ (0, T ;L2 (Γ3)

)
; 0 ≤ β (t) ≤ 1 ∀t ∈ [0, T ] , a.e. on Γ3

}
,

and, finally we assume that the initial bonding field satisfies

β0 ∈ L2 (Γ3) ; 0 ≤ β0 ≤ 1 a.e. on Γ3.(2.15)

Now by assuming the solution to be sufficiently regular, we obtain by using Green’s
formula that the problem P1 has the following variational formulation.

Problem P2. Find a displacement field u ∈ W 1,∞ (0, T ;V ) and a bonding field β ∈
W 1,∞ (0, T ;L2 (Γ3)

) ∩B such that

u (t) ∈ K, 〈Fε(u (t)), ε (v − u (t))〉Q + j (u (t) , v) − j (u (t) , u (t)) +

r (β (t) , u (t) , v − u (t)) ≥ 〈f (t) , v − u (t)〉V ∀ v ∈ K, t ∈ [0, T ] ,
(2.16)

β̇ (t) = −
[
β (t)

(
cν (Rν (uν (t)))2 + cτ (|Rτ (uτ (t))|)2

)
− εa

]
+

for a.e. t ∈ (0, T ) ,

(2.17)

β (0) = β0 on Γ3,(2.18)
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where

rν (β, u, v) = − ∫
Γ3
cνβ

2Rν (uν) vνda, rτ (β, u, v) =
∫
Γ3
cτβ

2Rτ (uτ ) .vτda,

j (u, v) =
∫
Γ3
μ |R∗ (σν (u))| |vτ | da, r = rν + rτ .

Our main result of this section, which will be established in the next is the following
theorem.

Theorem 2.1. Let T > 0 and assume that (2.11), (2.14), (2.15), (2.16) and (2.17)
hold. Then there exists a constant c > 0 such that Problem P2 has a unique solution
if

cd2
Ω ‖μ‖L∞(Γ3)

< m.

3. Existence and uniqueness result

The proof of Theorem 2.1 is carried out in several steps. In the first step, for a given
β ∈ C

(
[0, T ] ;L2 (Γ3)

) ∩B, we consider the following variational problem.

Problem P1β . Find uβ : [0, T ] → K such that

〈Fε (uβ (t)) , ε (v − uβ (t))〉Q + j (uβ (t) , v) − j (uβ (t) , uβ (t)) +

r (β (t) , uβ (t) , v − uβ (t)) ≥ 〈f (t) , v − uβ (t)〉V ∀ v ∈ K, t ∈ [0, T ] .
(3.1)

We show the following result.

Proposition 3.1. There exists a constant c > 0 such that Problem P1β admits a
unique solution uβ ∈ C ([0, T ] ;K) if

cd2
Ω ‖μ‖L∞(Γ3)

< m.

Proof. For the proof of this proposition we consider an intermediate problem. Indeed,
for g ∈ C∗

+, where

C∗
+ =

{
k ∈ C

(
[0, T ] ;L2 (Γ3)

)
; k (t) ≥ 0 ∀t ∈ [0, T ] , a.e. on Γ3

}
,

we define the auxiliary problem P g
1β as:

Problem P g
1β . Find ug : [0, T ] → K such that

〈Fε (ug (t)) , ε (v − ug (t))〉Q + jg(t) (v) − jg(t) (ug (t)) +

r (β (t) , ug (t) , v − ug (t)) ≥ 〈f (t) , v − ug (t)〉V ∀ v ∈ K, t ∈ [0, T ] ,
(3.2)

where

jg(t) (v) =
∫

Γ3

μg (t) |vτ | da.
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We have the following result.

Lemma 3.2. There exists a unique solution to Problem P g
1β and it satisfies

ug ∈ C ([0, T ] ;K) .

Proof. Let t ∈ [0, T ] and let At : V → V be the operator given by

(Atu, v)V = 〈Fε (u) , ε (v)〉Q +
∫

Γ3

(−cνβ2Rν (uν) vν + cτβ
2Rτ (uτ ) .vτ )da.

We use (2.14) (a), (2.10), (2.15), |β| ≤ 1 and the properties (see [18]) of the operators
Rν and Rτ such that⎧⎨

⎩
|Rν (a) −Rν (b)| ≤ |a− b| , ∀a, b ∈ R,

|Rτ (a) −Rτ (b)| ≤ |a− b| , ∀a, b ∈ Rd.

(3.3)

It follows that At satisfies

|(Atu−Atv, w)V | ≤
[
M +

(
‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3)

)
d2
Ω

]
‖u− v‖V ‖w‖V .

Also, we use (2.14) (b) to see that

(Atu−Atv, u− v)V ≥ m ‖u− v‖2
V − ∫

Γ3
β2cν (Rν (uν) −Rν (vν)) (uν − vν) da

+
∫
Γ3
β2cτ (Rτ (uτ ) −Rτ (vτ )) . (uτ − vτ ) da.

Since

(Rν (uν) −Rν (vν)) (uν − vν) ≤ 0 a.e. on Γ3,

(Rτ (uτ ) −Rτ (vτ )) . (uτ − vτ ) ≥ 0 a.e. on Γ3,

we get

(Atu−Atv, u− v)V ≥ m ‖u− v‖2
V ,

which implies that At is strongly monotone. Therefore At is an operator strongly
monotone and Lipschitz continuous. On the other hand jg(t) is a continuous semi-
norm, then by a classical argument of elliptic variational inequalities [1], we de-
duce that the problem P g

1β has a unique solution ug (t). Now, we shall prove that
ug ∈ C ([0, T ] ;K) . Indeed, write the inequality (3.2) for t = ti and take v = ug (tj),
i, j = 1, 2, we have by adding the two inequalities
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〈Fε (ug (t1)) − Fε (ug (t2)) , ε (ug (t2) − ug (t1))〉Q +

jg(t1) (ug (t2)) − jg(t1) (ug (t1)) + jg(t2) (ug (t1)) − jg(t2) (ug (t2)) +

r (β (t1) , ug (t1) , ug (t2) − ug (t1)) + r (β (t2) , ug (t2) , ug (t1) − ug (t2)) ≥

〈f (t1) − f (t2) , ug (t2) − ug (t1)〉V .
Using (2.14) (b), (3.3), |Rν (uν)| ≤ L and |Rτ (uτ )| ≤ L, it follows that there exists
a constant C > 0 such that

‖ug (t1) − ug (t2)‖V ≤

C
(
‖β (t1) − β (t2)‖L2(Γ3) + ‖f (t1) − f (t2)‖V + ‖g (t1) − g (t2)‖L2(Γ3)

)

∀t1, t2 ∈ [0, T ] .

As β, g ∈ C
(
[0, T ] ;L2 (Γ3)

)
and f ∈ C ([0, T ] ;V ), we conclude from the previous

inequality that ug ∈ C ([0, T ] ;K). Now, in the second step we consider the folowing
mapping defined by

Φ : C∗
+ → C∗

+

g → Φ (g) = |R∗ (σν (ug))| .
We have the following result.

Lemma 3.3. For every g ∈ C∗
+, Φ (g) belongs to C∗

+ and there exists a constant
c > 0 such that if

cd2
Ω ‖μ‖L∞(Γ3)

< m,

then the mapping Φ admits a unique fixed point g∗ and ug∗ is a unique solution
tothe Problem P1β .

Proof. Let t1, t2 ∈ [0, T ] and g ∈ C∗
+. Using the continuity of R∗ and (2.13), there

exists a constant C > 0 such that
‖Φ (g (t1)) − Φ (g (t2))‖L2(Γ3)

≤

C
(
‖ug (t1) − ug (t2)‖L2(Γ3) + ‖f (t1) − f (t2)‖V

)
.

Therefore as ug ∈ C ([0, T ] ;K) and f ∈ C ([0, T ] ;V ), the previous inequality implies
that Φ (g) ∈ C

(
[0, T ] ;L2 (Γ3)

)
. Moreover Φ (g (t)) ≥ 0 ∀t ∈ [0, T ] a.e. on Γ3, so we

deduce that Φ (g) ∈ C∗
+. Now, let g1, g2 ∈ C∗

+, then

‖Φ (g1 (t)) − Φ (g2 (t))‖L2(Γ3)
= ‖R∗ (σν (ug1 (t))) −R∗ (σν (ug2 (t)))‖L2(Γ3)

.
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Using (2.13), the continuity of R∗ and (2.10), we deduce that there exists a constant
c > 0 such that

‖Φ (g1 (t)) − Φ (g2 (t))‖L2(Γ3) ≤ c ‖ug1 (t) − ug2 (t)‖V .

Let gj (t), j = 1, 2 and ugj (t) the corresponding solutions. Take v = ug2 (t) in the
equivalent inequality to relation (3.2) with g = g1 (t) and take v = ug1 (t) in the
equivalent inequality to relation (3.2) with g (t) = g2 (t), we get:

‖ug1 (t) − ug2 (t)‖V ≤ dΩ

m
‖μ‖L∞(Γ3) ‖g1 (t) − g2 (t)‖

L2(Γ3)
.

It follows that

‖Φ (g1 (t)) − Φ (g2 (t))‖L2(Γ3) ≤ c
d2
Ω

m
‖μ‖L∞(Γ3) ‖g1 (t) − g2 (t)‖

L2(Γ3)
,

and thus,

‖Φ (g1) − Φ (g2)‖C([0,T ];L2(Γ3))
≤ c

d2
Ω

m
‖μ‖L∞(Γ3) ‖g1 − g2‖C([0,T ];L2(Γ3))

.

This last inequality implies such that if

cd2
Ω ‖μ‖L∞(Γ3)

< m,

the mapping Φ is a contraction and then it admits a unique fixed point g∗ and ug∗
is a unique solution to Problem P1β . �

In the second step we consider the following problem.

Problem P2β . Find a bonding field βa : [0, T ] → L∞ (Γ3) such that

β̇a (t) = −
[
βa (t)

(
cν
(
Rν

(
u

βaν (t)
))2 + cτ

(∣∣Rτ

(
u

βaτ (t)
)∣∣)2)− εa

]
+

(3.4)

a.e. t ∈ (0, T ) ,

βa (0) = β0 on Γ3.(3.5)

We obtain the following result.
Proposition 3.4. There exists a unique solution to Problem P2β and it satisfies

βa ∈W 1,∞ (0, T ;L2 (Γ3)
) ∩B.

Proof. Let k > 0 and let

X =

{
β ∈ C

(
[0, T ] ;L2 (Γ3)

)
; sup

t∈[0,T ]

[
exp (−kt) ‖β (t)‖L2(Γ3)

]
< +∞

}
.

X is a Banach space for the norm

‖β‖X = sup
t∈[0,T ]

[
exp (−kt) ‖β (t)‖L2(Γ3)

]
,
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and consider the mapping T : X → X given by

Tβ (t) = β0 −
∫ t

0

[
β (s)

(
cν
(
Rν

(
u

βν (s)
))2 + cτ

(∣∣Rτ

(
u

βτ (s)
)∣∣)2)− εa

]
+
ds.

Then there exists a constant c1 > 0 such that

‖Tβ1 (t) − Tβ2 (t)‖L2(Γ3)

≤ c1
∫ t

0

∥∥∥(β1 (s))
(
Rν

(
u

β1ν (s)
))2 − (β2 (s))

(
Rν

(
u

β2ν (s)
))2∥∥∥

L2(Γ3)
ds

+c1
∫ t

0

∥∥∥(β1 (s))
(∣∣Rτ

(
u

β1τ (s)
)∣∣)2 − (β2 (s))

(∣∣Rτ

(
u

β2τ (s)
)∣∣)2∥∥∥

L2(Γ3)
ds.

We use the definition of the truncation operators Rν and Rτ and write

β1 (s) = β1 (s) − β2 (s) + β2 (s) .

After some elementary calculation we find that there exists a constant c2 > 0 such
that

‖Tβ1 (t) − Tβ2 (t)‖L2(Γ3)
≤

c2
∫ t

0 ‖β1 (s) − β2 (s)‖L2(Γ3)
ds+ c2

∫ t

0 ‖uβ1 (s) − uβ2 (s)‖L2(Γ3)
ds.

Now, we still need to show the following result.

Lemma 3.5. For

cd2
Ω ‖μ‖L∞(Γ3)

< m,

there exists a constant c3 > 0 such that

‖uβ1 (t) − uβ2 (t)‖V ≤ c3 ‖β1 (t) − β2 (t)‖L2(Γ3) .

Proof. We take v = uβj (t) in the inequality (3.1) written for β (t) = βi (t) i, j = 1, 2
and adding the two inequalities, we get

〈Fε(uβ1 (t)) − Fε(uβ2 (t)), ε (uβ2 (t) − uβ1 (t))〉Q + j (uβ1 (t) , uβ2 (t))−

j (uβ1 (t) , uβ1 (t)) + j (uβ2 (t) , uβ1 (t)) − j (uβ2 (t) , uβ2 (t)) +

r (β1 (t) , uβ1 (t) , uβ2 (t) − uβ1 (t)) + r (β2 (t) , uβ2 (t) , uβ1 (t) − uβ2 (t)) ≥ 0.

(3.6)

We have
j (uβ1 (t) , uβ2 (t)) − j (uβ1 (t) , uβ1 (t)) +

j (uβ2 (t) , uβ1 (t)) − j (uβ2 (t) , uβ2 (t)) =

∫
Γ3
μ(|R∗ (σν (uβ1ν (t)))| − |R∗ (σν (uβ2ν (t)))|) (|uβ2τ (t)| − |uβ1τ (t)|) da.
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Using the continuity of R∗, (2.10) and (2.13), we deduce that there exists a constant
c > 0 such that∣∣∣∫Γ3

μ(|R∗ (σν (uβ1ν (t)))| − |R∗ (σν (uβ2ν (t)))|) (|uβ2τ (t)| − |uβ1τ (t)|) da
∣∣∣

≤ c ‖μ‖L∞(Γ3) d
2
Ω ‖uβ1 (t) − uβ2 (t)‖2

V

On the other hand, we have

r (β1 (t) , uβ1 (t) , uβ2 (t) − uβ1 (t)) + r (β2 (t) , uβ2 (t) , uβ1 (t) − uβ2 (t)) =

− ∫
Γ3
cν

(
β1 (t)2Rν (uβ1ν (t)) − β2 (t)2Rν (uβ2ν (t))

)
(uβ2ν (t) − uβ1ν (t)) da+

∫
Γ3
cτ (β1 (t)2Rτ (uβ1τ (t)) − β2 (t)2Rτ (uβ2τ (t))). (uβ2τ (t) − uβ1τ (t)) da,

and write

∫
Γ3
cν

(
β1 (t)2Rν (uβ1ν (t)) − β2 (t)2 Rν (uβ2ν (t))

)
(uβ2ν (t) − uβ1ν (t)) da =

∫
Γ3
cν

(
β1 (t)2 − β2 (t)2

)
Rν (uβ1ν (t)) (uβ2ν (t) − uβ1ν (t)) da+

∫
Γ3
cνβ2 (t)2 (Rν (uβ1ν (t)) −Rν (uβ2ν (t))) (uβ2ν (t) − uβ1ν (t)) da,

∫
Γ3
cτ (β1 (t)2Rτ (uβ1τ (t)) − β2 (t)2Rτ (uβ2τ (t))). (uβ2τ (t) − uβ1τ (t)) da =

∫
Γ3
cτ

(
β1 (t)2 − β2 (t)2

)
Rτ (uβ1τ (t)). (uβ2τ (t) − uβ1τ (t)) da+

∫
Γ3
cτβ2 (t)2 (Rτ (uβ1τ (t) −Rτ (uβ2τ (t))) . (uβ2τ (t) − uβ1τ (t)) da.

Since we have∫
Γ3
cνβ2 (t)2 (Rν (uβ1ν (t)) −Rν (uβ2ν (t))) (uβ2ν (t) − uβ1ν (t)) da ≥ 0,

∫
Γ3
cτβ2 (t)2 (Rτ (uβ1τ (t) −Rτ (uβ2τ (t))) . (uβ2τ (t) − uβ1τ (t)) da ≤ 0,

so by using (3.6), (2.14) (b), (2.10), |R (uν)| ≤ L and |R (uτ )| ≤ L, we get the
estimate

m ‖uβ1 (t) − uβ2 (t)‖2
V ≤ cd2

Ω ‖μ‖L∞(Γ3) ‖uβ1 (t) − uβ2 (t)‖2
V +

(
‖cν‖L∞(Γ3)

+ ‖cτ‖L∞(Γ3)

)
LdΩ ‖β1 (t) − β2 (t)‖L2(Γ3)

‖uβ1 (t) − uβ2 (t)‖V .
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Therefore if

cd2
Ω ‖μ‖L∞(Γ3)

< m,

we obtain

‖uβ1 (t) − uβ2 (t)‖V ≤ c3 ‖β1 (t) − β2 (t)‖L2(Γ3) ,(3.7)

for some constant c3 > 0, and so the lemma is proved. Now, to end the proof of
Proposition 3.4, we use (2.10) to see that there exists a constant c4 > 0 such that

‖Tβ1 (t) − Tβ2 (t)‖L2(Γ3) ≤

c4
∫ t

0 ‖β1 (s) − β2 (s)‖L2(Γ3) ds+ c4
∫ t

0 ‖uβ1 (s) − uβ2 (s)‖V ds,

and therefore ( 3.7) implies that for some constant c5 > 0 :

‖Tβ1 (t) − Tβ2 (t)‖L2(Γ3)
≤ c5

∫ t

0 ‖β1 (s) − β2 (s)‖L2(Γ3)
ds,

and then,

‖Tβ1 − Tβ2‖X ≤ c5
k
‖β1 − β2‖X .(3.8)

The inequality (3.8) shows that for k sufficiently large T is a contraction. Hence we
deduce, by using the fixed point theorem that T has a unique fixed point βa which
satisfies (3.4) and (3.5). The regularity βa ∈ B is a consequence of (3.4) and (2.17);
see [19] for details. �

Now, we provide the existence of the solution of Theorem 2.1. Indeed, let βa be
the fixed point of T and let ua be the solution of the Problem P1β for β = βa, i-e.,
ua = uβa . Take v = ua (tj) in the inequality (3.1) written for t = ti, i, j = 1, 2 and
adding the two inequalities, as in Proposition 3.1, there exists a constant c6 > 0
such that

‖ua (t1) − ua (t2)‖V ≤

c6

(
‖βa (t1) − βa (t2)‖L2(Γ3)

+ ‖f (t1) − f (t2)‖V

)
∀t1, t2 ∈ [0, T ] .

(3.9)

Now, as Tβa = βa we deduce from Proposition 3.4 that βa ∈ W 1,∞ (0, T ;L2 (Γ3)
)

and moreover as f ∈ W 1,∞ (0, T ;V ), then (3.9) implies that ua ∈ W 1,∞ (0, T ;V ).
Thus, we conclude by (3.1), (3.4) and (3.5) that (ua, βa) is a solution to the Problem
P2. To prove the uniqueness of the solution, suppose that (u, β) is a solution of the
Problem P2 which satisfies

(u, β) ∈W 1,∞ (0, T ;V ) ×W 1,∞ (0, T ;L2 (Γ3)
) ∩B,

it follows that β ∈ B. Moreover we deduce from (3.1) that u is a solution to problem
P1β , and as by Proposition 3.1 this problem has a unique solution denoted by uβ ,
we get u = uβ. Take u = uβ in (2.19) and use the initial condition (2.21), we deduce
that β is a solution of the Problem P2β . Therefore, we obtain from Proposition 3.4
that β = βa and we conclude that (ua, βa) is a unique solution to the Problem P2.
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ANALIZA ZAGADNIENIA SZORSTKIEGO STYKU WRAZ
Z PRZYLEGANIEM DLA NIELINIOWYCH CIA�L SPRȨŻYSTYCH I
SFORMU�LOWANIE ZAGADNIENIA, ISTNIENIE I JEDNOZNACZNOŚĆ

S t r e s z c z e n i e
Rozpatrujemy model matematyczny, który opisuje zagadnienie styku nieliniowego cia�la

sprȩżystego z pod�lożem. Zetkniȩcie siȩ jest szorstkie i jest modelowane przez warunki
Signoriniego i przyporza̧dkowane prawo tarcia, w którym uwzglȩdnia siȩ przyleganie styka-
ja̧cych siȩ powierzchni. Ewolucja pola wia̧ża̧cego jest opisana przez równanie różniczkowe
pierwszego rzȩdu. Przedstawiamy sformu�lowanie wariacyjne zagadnienia mechanicznego
i dowodzimy wyniku o istnieniu i jednoznaczności rozwia̧zania s�labego, o ile wspó�lczynnik
tarcia jest dostatecznie ma�ly. Dowody sa̧ oparte na wykorzystaniu nierówności wariacyjnych
zależnych od czasu, równań różniczkowych i twierdzeń Banacha o punkcie sta�lym.
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ANALYSIS OF A FRICTIONAL CONTACT PROBLEM
WITH ADHESION FOR NONLINEAR ELASTIC MATERIALS II
THE PENALIZED AND REGULARIZED PROBLEM

Summary

In this part II we consider a sequence of penalized and regularized problems which
have at least one solution by using a result on pseudomonotone operators. Using compact-
ness properties we obtain a solution of the original model by passing to the limit as the
penalization and regularization parameter converges to zero.

4. The penalized and regularized problem

Let us define for δ > 0 the penalized and regularized problems with frictional contact
and adhesion as:

Problem P1δ. Find (uδ, βδ) ∈ W 1,∞(0, T ;V ) ×W 1,∞ (0, T ;L∞ (Γ3))) ∩B such that

〈Fε (uδ (t)) , ε (v)〉Q +
1
δ

(
(uδν (t))+ , vν

)
L2(Γ3)

+ jδ (uδ (t) , v) +

r (βδ (t) , uδ (t) , v) = 〈f (t) , v〉V ∀v ∈ V , t ∈ [0, T ] ,

(4.1)

β̇δ (t) = −
[
β (t)

(
cν (Rν (u

δν (t)))2 + cτ (|Rτ (uδτ (t))|)2
)
− εa

]
+

(4.2)

for a.e. t ∈ (0, T ) ,

βδ (0) = β0 on Γ3,(4.3)
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where

jδ (uδ (t) , v) =
∫

Γ3

μ |R∗ (σδν (t)))| uδτ (t)√
u2

δτ (t) + δ2
vτda, σδν = −1

δ
(uδν)+ .

We have the following result.

Theorem 4.1. There exists at least one solution to the Problem P1δ.

Proof. The proof of Theorem 4.1 is similar to that of Theorem 2.1 and is carried
out in several steps. For thus, we omit the details of the proof. The steps are the
following:

i) For any β ∈ C
(
[0, T ] ;L2 (Γ3)

) ∩ B, we prove that there exists at least one
solution uδ ∈ L∞ (0, T ;V ) such that

〈Fε (uδ (t)) , ε (v)〉Q +
1
δ

(
(uδν (t))+ , vν

)
L2(Γ3)

+ jδ (uδ (t) , v) +

r (βδ (t) , uδ (t) , v) = 〈f (t) , v〉V ∀v ∈ V , t ∈ [0, T ] .

(4.4)

To provide this step for all t ∈ [0, T ] , we define the operator Tt : V → V
′

by

(Ttu, v)V ′×V = 〈Fε (u) , ε (v)〉Q +
1
δ

(
(uν)+ , vν

)
L2(Γ3)

+ r (β, u, v)

∀u, v ∈ V,

where V
′

is the dual of V . In the study of the operator Tt we need to recall that for
a, b ∈ R, we have

(a+ − b+) (a− b) ≥ (a+ − b+)2 ,
|a+ − b+| ≤ |a− b| .(4.5)

Using (4.5) we see as in the proof of Lemma 3.2 that the operator Tt is strongly
monotone as for all u, v ∈ V,

(Ttu− Ttv, u − v)V ′×V ≥ m ‖u− v‖2
V ,

bounded and elliptic for each δ > 0, as also for all u, v ∈ V , the following holds:∣∣(Ttu, v)V ′×V

∣∣ ≤ [M +
(
‖cν‖L∞(Γ3)

+ ‖cτ‖L∞(Γ3)
+

1
δ

)
d2
Ω

]
‖u‖V ‖v‖V ,

(Ttv, v)V ′×V ≥ m ‖v‖2
V

On the other hand, we define the operator Pt : V → V
′

by

(Ptu, v)V ′×V =
∫

Γ3

μ |R∗ (σδν)| uτ√
u2

τ + δ2
vτda.

We notice as in [22], by using (2.13) and the compactness of R∗, that there exists a
constant c0 > 0 such that∣∣(Ptu, v)V ′×V

∣∣ ≤ c0
δ
‖u‖V ‖v‖V , ∀u, v ∈ V.
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Using the compact embedding H
1
2 (Γ3) ↪→ L2 (Γ3) and the Lebesgue dominated

convergence, we get that the operator Pt is completely continuous for each δ >

0. Moreover it satisfies (Ptv, v)V ′×V ≥ 0 ∀v ∈ V . Therefore, using the result on
pseudomonotone operators obtained in [8], we conclude that the operator Tt + Pt is
pseudomonotone, bounded and coercif for each δ > 0. So, there exists at least one
solution uδ (t) of (4.4). Take v = uδ (t) in (4.4), it follows that

sup
t∈(0,T )

‖uδ (t)‖V ≤ 1
m

‖f‖L∞(0,T ;V ) ,

which implies uδ ∈ L∞ (0, T ;V ) .
ii) There exists a unique βδ such that

βδ ∈W 1,∞ (0, T ;L2 (Γ3)
)
,(4.6)

β̇δ (t) = −
[
βδ (t)

(
cν

(
Rν

(
u

βδ
ν (t)

))2

+ cτ

(∣∣∣Rτ

(
u

βδ
τ (t)

)∣∣∣)2
)
− εa

]
+

(4.7)

for a.e. t ∈ (0, T ) ,

βδ (0) = β0.(4.8)

iii) Let βδ defined in ii) and denote again by uδ the function obtained in step i)
for β = βδ. Then, by using (4.6)–(4.8) it is easy to see that βδ is the unique solution
to Problem P2δ such that

(uδ, βδ) ∈W 1,∞ (0, T ;L2 (Γ3)
)×W 1,∞ (0, T ;L2 (Γ3)

) ∩B,
and (uδ, βδ) is a solution to the Problem P1δ.

Now, in the following theorem we shall prove the convergence of the solution
(uδ, βδ) as δ → 0 to the solution (u, β) of thr Problem P2 as follows.

Theorem 4.2. Assume that (2.14) , (2.15) and (2.17) hold. Then we have the fol-
lowing convergences:

lim
δ→0

‖uδ (t) − u (t)‖V = 0 for all t ∈ [0, T ] ,(4.9)

lim
δ→0

‖βδ (t) − β (t)‖L2(Γ3) = 0 for all t ∈ [0, T ] .(4.10)

The proof is carried out in several steps. In the first step, we show the following
lemma.

Lemma 4.3. There exists a function ū (t) ∈ V such that after passing to a subse-
quence still denoted (uδ (t)) we have

uδ (t) → ū (t) weakly in V for all t ∈ [0, T ] .(4.11)
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Proof. Take in (4.9) v = uδ (t). Then we get

〈Fε (uδ (t)) , ε (uδ (t))〉Q +
1
δ

(
(uδν (t))+ , (uδ (t))

)
L2(Γ3)

+

r (βδ (t) , uδ (t) , uδ (t)) + jδ (uδ (t) , uδ (t)) = 〈f (t) , uδ (t)〉V .

(4.12)

Using (4.5), we have(
(uδν (t))+ , (uδν (t))

)
L2(Γ3)

≥ ((uδν (t))+ , (uδν (t))+
)
L2(Γ3)

≥ 0,

and since

r (βδ (t) , uδ (t) , uδ (t)) + jδ (uδ (t) , uδ (t)) ≥ 0,

then we get from (4.12) that

〈Fε (uδ (t)) , ε (uδ (t))〉Q ≤ 〈f (t) , uδ (t)〉V
Keeping in mind (2.14) (b), we deduce that there exists a constant C > 0 such that

‖uδ (t)‖V ≤ C ‖f (t)‖V .

It follows that the sequence (uδ (t)) is bounded in V , so there exists a function
ū (t) ∈ V and a subsequence again denoted (uδ (t)) such that (4.11) holds. Now,
consider the following auxiliary problem.

Problem P3. Find β ∈W 1,∞ (0, T ;L2 (Γ3)
)
, such that

β̇ (t) = −
[
β (t)

(
cν
(
Rν

(
ū

βν (t)
))2 + cτ

(∣∣Rτ

(
ū

βτ (t)
)∣∣)2)− εa

]
+
a.e. t ∈ (0, T ) ,

β (0) = β0.

Using the same proof as in Proposition 3.4, we have the following result.

Lemma 4.4. Problem P3 has a unique solution β ∈W 1,∞ (0, T ;L2 (Γ3)
) ∩B.

Now, we show the following convergence result.

Lemma 4.5. Let β be the solution to the Problem P3. Then we have

lim
δ→0

‖βδ (t) − β (t)‖L2(Γ3) = 0 for all t ∈ [0, T ] .(4.13)

Proof. Similarly as in the proof of Proposition 3.4, using Gronwall-type argument
and the properties of Rν and Rτ , we can seethere exists a constant C > 0 such that

‖βδ (t) − β (t)‖L2(Γ3) ≤ C

∫ t

0

‖uδ (s) − ū (s)‖L2(Γ3) ds.(4.14)

Using (4.11) and the compact imbedding H
1
2 (Γ3) ↪→ L2 (Γ3), we deduce that

uδ (t) → ū (t) strongly in L2 (Γ3), as δ → 0. On the other hand, there exists a
constant C2 > 0 such that
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‖uδ (t) − ū (t)‖L2(Γ3) ≤ dΩ ‖uδ (t) − ū (t)‖V

≤ C2 (‖f (t)‖V + ‖ū (t)‖V ) ,

which implies that there exists a constant C3 > 0 depending on f and ū such that

‖uδ (t) − ū (t)‖L2(Γ3) ≤ C3.

It follows from the Lebesgue convergence theorem that

lim
δ→0

∫ t

0

‖uδ (s) − ū (s)‖L2(Γ3) ds = 0,(4.15)

and so from (4.14) we get

‖βδ (t) − β (t)‖L2(Γ3) → 0 for all t ∈ [0, T ] .

Lemma 4.6. We have ū (t) = u (t) for all t ∈ [0, T ] .

Proof. From (4.12) it follows that there exists a constant C1 > 0 such that(
(uδν (t))+ , (uδν (t))

)
L2(Γ3)

≤ δC1,

and then (
(uδν (t))+ , (uδν (t))+

)
L2(Γ3)

≤ δC1.(4.16)

Since

(uδν (t))+ → (ūν (t))+ strongly in L2 (Γ3) , as δ → 0,(4.17)

we deduce from (4.16) and (4.17) that∥∥(ūν (t))+
∥∥

L2(Γ3)
≤ lim inf

δ→0

∥∥(uδν (t))+
∥∥

L2(Γ3)
= 0,(4.18)

and it follows from (4.18) that (ūν (t))+ = 0, i-e. ūν (t) ≤ 0 a.e. on Γ3 which shows
that ū (t) ∈ K. Now, testing with v − uδ (t) in (4.4) and keeping in mind that(

(uδν (t))+ , vν − uδν (t)
)
L2(Γ3)

=
(
(uδν (t))+ − vν+, vν − uδν (t)

)
L2(Γ3)

≤ 0 ∀v ∈ K,

we get

〈Fε (uδ (t)) , ε (v − uδ (t))〉Q + jδ (uδ (t) , v − uδ (t)) +

r (βδ (t) , uδ (t) , v − uδ (t)) ≥ 〈f (t) , v − uδ (t)〉V ∀v ∈ K.
(4.19)

Now, we pass to the limit, as δ → 0, in (4.19). We have as in [22], σδν (t) →
σν (ū (t)) weakly in H− 1

2 (Γ3) ∀t ∈ [0, T ]. Then, using (2.13) and the compacity of
R∗, we get

R∗ (σδν (t)) → R∗ (σν (ū (t))) strongly in L2 (Γ3) .
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Hence, we obtain

lim
δ→0

∫
Γ3
μ |R∗ (σδν (t))| uδτ (t)√

u2
δτ (t) + δ2

(vτ − uδτ (t)) da ≤

∫
Γ3
μ |R∗ (σν (ū (t)))| (|vτ | − |ūτ (t)|) da = j (ū (t) , v) − j (ū (t) , ū (t)) .

Now write

r (βδ (t) , uδ (t) , v − uδ (t)) = r (βδ (t) , uδ (t) , v − uδ (t))−

r (β (t) , uδ (t) , v − uδ (t)) + r (β (t) , uδ (t) , v − uδ (t)) .

Since

|r (βδ (t) , uδ (t) , v − uδ (t)) − r (β (t) , uδ (t) , v − uδ (t))| ≤

C ‖βδ (t) − β (t)‖L2(Γ3) ‖v − uδ (t)‖V ,

it follows by using (4.13) that

r (βδ (t) , uδ (t) , v − uδ (t)) − r (β (t) , uδ (t) , v − uδ (t)) → 0, as δ → 0.

Moreover, using the proprieties (3.3) of Rν and Rτ , it is clear that

r (β (t) , uδ (t) , v − uδ (t)) → r (β (t) , u (t) , v − u (t)) , as δ → 0.

Therefore, passing to the limit in (4.19) as δ → 0, we obtain

ū (t) ∈ K,

〈Fε(ū (t)), ε (v − ū (t))〉Q + j (ū (t) , v) − j (ū (t) , ū (t)) +

r (β (t) , ū (t) , v − ū (t)) ≥ 〈f (t) , v − ū (t)〉V ∀v ∈ K.

(4.20)

Now, taking v = u (t) in (4.20) and v = ū (t) in (2.19) and adding the two inequalities,
we get by using the assumption (2.14) (b) on F that

m ‖ū (t) − u (t)‖2
V

≤ |j (ū (t) , u (t)) + j (u (t) , ū (t)) − j (ū (t) , ū (t)) − j (u (t) , u (t))|

+r (β (t) , ū (t) , u (t) − ū (t)) + r (β (t) , u (t) , ū (t) − u (t)) ,

and using the estimate

r (β (t) , ū (t) , u (t) − ū (t)) + r (β (t) , u (t) , ū (t) − u (t)) ≤ 0

we get

m ‖ū (t) − u (t)‖2
V

≤ |j (ū (t) , u (t)) + j (u (t) , ū (t)) − j (ū (t) , ū (t)) − j (u (t) , u (t))| ,
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which implies

m ‖ū (t) − u (t)‖2
V ≤ cd2

Ω ‖μ‖L∞(Γ3) ‖ū (t) − u (t)‖2
V .

This previous inequality enables us to obtain that, as c d2
Ω ‖μ‖L∞(Γ3)

< m,

ū (t) = u (t) .

Now, we have all the ingredients to prove Theorem 4.2. Indeed, take v = u (t) in
(4.19). By using the assumption (2.14) (b) on F we get

m ‖uδ (t) − u (t)‖2
V ≤

jδ (uδ (t) , u (t) − uδ (t)) + r (βδ (t) , uδ (t) , u (t) − uδ (t))

+ 〈Fε (u (t)) , ε (u (t) − uδ (t))〉Q + 〈f (t) , uδ (t) − u (t)〉V .

(4.21)

Using the convergences, as δ → 0 :

jδ (uδ (t) , u (t) − uδ (t)) + r (βδ (t) , uδ (t) , u (t) − uδ (t)) → 0,

〈Fε (u (t)) , ε (u (t) − uδ (t))〉Q + 〈f (t) , uδ (t) − u (t)〉V → 0,

we obtain by passing to the limit in (4.21) that

‖uδ (t) − u (t)‖V → 0 for all t ∈ [0, T ] ,

and so, (4.9) is proved.
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ANALIZA ZAGADNIENIA SZORSTKIEGO STYKU WRAZ
Z PRZYLEGANIEM DLA NIELINIOWYCH CIA�L SPRȨŻYSTYCH II
ZREGULARYZOWANE ZAGADNIENIE Z FUNKCJA̧ KARY

S t r e s z c z e n i e
Rozpatrujemy model matematyczny, który opisuje zagadnienie styku nieliniowego cia�la

sprȩżystego z pod�lożem. W obecnej czȩści II rozważamy cia̧g zregularyzowanych zagad-
nień z funkcja̧ kary, posiadaja̧cych co najmniej jedno rozwia̧zanie, przy użyciu pewnego
wyniku o operatorach pseudomonotonicznych. Stosuja̧c z kolei w�lasności zwartości uzysku-
jemy rozwia̧zanie dla pierwotnego modelu przez przej́scie do granicy przy parametrze pe-
nalizacji (kary) i regularyzacji da̧ża̧cym do zera.
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AN INSTRUMENT FOR MODELLING ENERGY LEVELS
OF PARTICLES AND THEIR NATURAL TRANSITIONS

Summary

In this article wes describe a construction and an operation principle of a simple instru-
ment co-operating with a centrifuge and consisting of two transparent, coaxial, respectively
profiled funnels. After setting the instrument in rotary motion, the device allows modelling
the continuous and discrete distribution of particles energy by using globules located inside
the funnels.

An understanding of ideas of energy distribution and energy levels of particles is
crucial for explanation of many phenomena in classic and quantum physics. It is also
important to notice differences between continuous and discrete energy distribution
and transitions between the energy levels [1, 2]. In order to achieve these aims, a
simple instrument was constructed allowing a demonstration of the energy levels of
particles and transitions between them in a model manner.

The construction of the instrument is shown in a cross-axial section in Fig. 1. The
instrument consists of two transparent funnels 1, 2, placed coaxially on a vertical
rod 3. The bottom end of the rod is fixed in a spindle centrifuge 4 using the screw 5.
The lateral surface of upper funnel 1 has a stepped form. The heights of the steps are
well matched and increase together with their radii. The bottom funnel 2 is in shape
similar to that of rotary paraboloid. The upper edges of both funnels are inclined
towards their centres. Several small globules 6 are placed in both funnels.

A principle of operation of the instrument is as follows. When the instrument
remains immovable, the globules 6 are in the bottoms of both funnels. After setting
the instrument in a rotary motion, a centrifugal force of inertia Fr acts on each of
the globules. Together with the increase of angular velocity of motion ω the value
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Fig. 1: Construction of the instrument shown in cross-axial section.

of Fr force also rises [3]. In the lower funnel the force causes continuous climbing of
the globules to the position 7 and increasing their distance from rotation axis. This
situation corresponds to continuous energy distribution of the particles. In the upper
funnel the globules can increase the distance from the rotation axis and transit to
higher positions 7 by rolling in the consecutive steps. It can occur only when the
angular velocity ω achieves strictly defined values. This situation corresponds to
non-continuous energy distribution of particles and occurring the energetic levels.

In order to ensure a correct operation of the instrument, the globules should roll
in the consecutive steps when angular velocity becomes higher and higher, hence
the height of the steps must meet a certain condition. In order to calculate this
condition, there should be compared the momentum of forces acting on the globule:
centrifugal force of inertia Frn to the force of weight of the globule Q acting on the
globule being in n step of hn height and moving in the circle of rn radius (Fig. 2).
Both the moments calculated in respect to upper edge of the step (point A in Fig. 2)
fulfil the following equation:
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Fig. 2: Forces acting on the globule located on the step.

Frn(rk − hn) = Q
√
r2k − (rk − hn)2,(1)

where rk denotes the globule radius. Let m denote the globule mass, then forces Frn

and Q appearing in equation (1) are expressed by the following formulas:

Frn = mω2rn,(2)

Q = mg.(3)

After substitution of formulas (2) and (3) to (1) and solving the resulting quadratic
equation, one achieves the following formula for hn:

hn = rk

(
1 − 1√

ω4r2n + g2

)
.(4)

In the constructed model of the instrument, the widths of the steps were equal to the
radius of the globules rk. (An advantage of this approach is a self-acting returning
of the globules to the bottom of the funnel after the rotary motion is stopped.) In
this situation the radius of the circle rn, in which the globules were moving was also
the internal radius of the n step.

In the lower funnel, a globule remains in the equilibrium position in a distance
r from the axis of rotation, if the result of forces Fr and Q is perpendicular to the
surface of the funnel (Fig. 3). This condition can be expressed by following equation:

tanα =
Fr

Q
=
ω2r

g
.(5)
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Fig. 3: Forces acting on the globule located in the lower funnel.

After substitution the formula known from geometry tanα = dy/dr to equation (5)
and the elementary integration, we achieve equation of curve describing cross-axial
section of the bottom funnel as follows:

y(r) =
(
ω2

2g

)
r2.(6)

The results of the formula (6) suggest that the curve should be a parabola. Using
equation (6) we can also easily show that a potential energy of the globule Ep being
on the height h = y(r) changes continuously and equals to its kinetic energy Ek.
Indeed:

Ep = mgy(r) =
mω2r2

2
=
mν2

2
= Ek.(7)

The described instrument can be self-made using easily accessible materials. It is
reasonable to adjust a dimension of the instrument to the dimensions of the globules.
Plastic or wooden globules are recommended. In the model described in this article,
there were used the plastic globules having diameter of 16 mm. Upper funnel having
stepped form was made of rings cut out of Plexiglas. The rings constituted the
horizontal surface of steps and the bottom of the funnel. The upper edge and vertical
surface of the funnel were made of strips of thin and transparent polyester. The
strips were cut out of smooth walls of plastic bottles. The width of strips should be
calculated by using the formula (4), taking into consideration radius of the globules
used rk, radiuses of the steps and an angular velocity ω required for rolling the
globules. The calculated value should be increased by adding the thickness of the
rings made of Plexiglas.
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The bottom funnel was made of the cut off upper part of large plastic bottle
having parabolic shape. In order to assemble all the parts of the instrument, it was
used the transparent epoxy glue. The dimensions of the instrument are not critical
and can be changed in a relatively broad range. The instrument used in this study, for
example, had a diameter of 100 mm and its total height was 250 mm. The transitions
of globules to the highest location was achieved at 5 rotation per second (31.4 rad/s).
The most convenient way to set the instrument in motion was the use of electrical
centrifuge with a rotation counter, however a normal centrifuge propelled by a crank
could also be applied.
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PRZYRZA̧D DO MODELOWANIA POZIOMÓW
ENERGETYCZNYCH CZA̧STEK I PRZEJŚĆ MIȨDZY NIMI

S t r e s z c z e n i e
W artykule opisano budowȩ i zasadȩ dzia�lania prostego przyrza̧du, wspó�lpracuja̧cego

z wirownica̧ i stanowia̧cego dwa wspó�ĺsrodkowe, odpowiednio wyprofilowane lejki. Po wpra-
wieniu przyrza̧du w ruch obrotowy, umożliwia on modelowanie cia̧g�lego albo dyskretnego
rozk�ladu energii kulek umieszczonych w lejku.
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ADSORPTION OF ATOMIC OXYGEN ON Pt(001).
A DENSITY-FUNCTIONAL THEORY STUDY

Summary

In this paper the preliminary results of the density-functional theory (DFT) calculations

for the atomic oxygen adsorption on Pt(001) are reported. The Pt(001) surface is modelled

by means of two five-atom clusters of planar and pyramidal geometries. Some structural,

energetic and electronic properties of the adsorbed O atom have been determined to probe

the interactions between the atomic adsorbate and the Pt(001) surface.

1. Introduction

Gas adsorption on transition-metal surfaces constitutes undoubtedly the central pil-
lar of heterogeneous catalysis [1–3]. Oxygen adsorption on platinum is one of the
most important heterogeneous processes due to its practical application for the fur-
ther catalytic oxidation of carbon oxide (CO).

Gas-surface interactions and subsequent reactions of the adsorbed species may be
complex and in many cases the fundamental mechanisms of adsorption and catalytic
reactions on surfaces are hard to discern. Two major mechanisms have been proposed
for catalytic reactions between two reactants on a surface so far [4, 5]. The first one
called the Eley-Rideal mechanism assumes that one reactant adsorbs on a surface
first, and then another species reacts with the adsorbed reactant directly from the
gas phase. As a result of the reaction a product is formed. In the second one, called
the Langmuir-Hinshelwood mechanism, both reactants adsorb on a surface, and then
they diffuse towards each other or one to the other along the surface. If they are
close enough, they can react to form a product. Most catalytic reactions follow the
Langmuir-Hinshelwood mechanism.
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Platinum is probably the most versatile transition metal because it catalyzes
many oxidation, reduction and reforming processes [1, 6]. In particular, the oxidation
reactions are of considerable interest and the oxidation of automotive exhaust gases
has become the most visible recent application of Pt. In this application, platinum
forms the so-called three-way catalyst which converts simultaneously two reducing
pollutants (CO and uncombusted hydrocarbons) and one oxidizing pollutant (NO) to
nontoxic products. Platinum is also employed in the industrial oxidation of ammonia
(the Ostwald process), ethylene epoxidation and partial oxidation of methane into
some useful derivatives such as methanol and formaldehyde. However, there are a
few obstacles to the use of platinum as a universal oxidation catalyst. Pt exhibits
the lack of selectivity for NO oxidation in the presence of sulphur dioxide (SO2). It
leads to the formation of SO3 and the poisoning of active sites on the surface of Pt.
Moreover, in partial oxidation reactions it is difficult to limit combustion to CO2

and H2O. These products are favoured because of the large thermodynamic driving
force for combustion and the high temperatures required for partial oxidation. In the
course of the Ostwald process a considerable loss of Pt catalyst is observed due to the
generation of volatile platinum oxide (PtO2) at the temperatures above 1000 K. A
subsurface oxygen species may be a precursor of PtO2. For the understanding of all
the above-mentioned applications, as well as the obstacles, the in-depth elucidation
of the nature of the interactions between oxygen and platinum surface is crucial.

The adsorption of oxygen has been mainly examined experimentally for the
Pt(111) surface [7–12]. At low temperatures oxygen adsorption is molecular. The
physisorbed state of O2 is present below 25 K and identified as a precursor to a
molecular chemisorbed state. In the temperature range 90–135K, two molecular
chemisorbed states are observed, namely the superoxo- (O−

2 ) and peroxo-like (O2−
2 )

configurations. Molecular oxygen can either desorb at ca. 170 K with an estimated
desorption barrier of ca. 0.4 eV or dissociate into atoms. Atomic oxygen dominates
on Pt(111) for a wide range of temperatures between 150 and 500 K. After the dis-
sociation, the oxygen atoms form islands which remain stable up to temperatures
450–500K, and then they desorb. The exact desorption temperature of the O atoms
is difficult to measure because of the strong coverage dependence. Campbell et al.
have determined desorption barriers of 1.82 eV at high coverage and of 2.21 eV at
low coverage [13]. The bond dissociation energy of free O2 is 5.12 eV, thus the es-
timated heat of adsorption of an oxygen atom is 3.66 eV. At room temperature,
oxygen forms a (2 × 2) ordered overlayer with atoms in threefold sites on Pt(111)
[14]. The oxygen-surface vertical and Pt-O distances are of 1.36 [15] and 2.02 Å [16]
respectively.

Pt(111) is a rather simple surface, where there is no lateral reconstruction and
surface layer relaxation is extremely small. On the contrary, Pt(001) exhibits two
different structures of distinguished chemical reactivities. One is the unreconstructed
(1 × 1) phase which is 0.21 eV less stable than the other which is a reconstructed
quasihexagonal structure [17]. At 123 K, O2 adsorbs dissociatively on the (1 × 1)
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surface whereas the dissociation does not occur on the reconstructed surface [18].
Oxygen adsorption lifts the surface reconstruction, but the detailed structure of
atomic oxygen on Pt(001) is not known.

Atomic-scale knowledge of adsorbate-surface interactions, adsorption positions
and energetics of individual reactants on the catalyst surface is required for the
precise understanding of the mechanisms of catalytic processes. A large amount
of information can be provided by various computational methods based on the
first principles. In particular, the methods using DFT have progressed in recent
years due to advances in computational speed along with the development of new
algorithms [19], and thus they have become indispensable for the investigations of
heterogeneous-catalysis processes [20]. The adsorption of oxygen on the Pt(111)
surface has been extensively studied by means of DFT [12, 21–29 and references
therein]. By contrast, the oxygen adsorption on Pt(001) has been the subject of
only a small number of theoretical studies [30–32]. Ge et al. [32] performed total-
energy pseudopotential calculations within the framework of DFT using the basis set
which consisted of plane waves. The Pt(001) surface was modelled by a slab inside a
supercell. The authors found that the bridge site was the most stable for the atomic
oxygen adsorption, followed by the fourfold hollow site. The atop site turned out the
least stable.

The objective of this paper is to increase the knowledge of the Pt(001) surface
by providing a detailed description of the O-atom adsorption on this surface. The
description includes some structural, energetic and electronic properties of the O
atom adsorbed on Pt(001).

2. Computational details

DFT, as implemented in the Gaussian 98 code [33], has been used for all of the calcu-
lations. The calculations are carried out by means of the B3LYP hybrid functional
[34], which combines exact Hartree-Fock exchange, the Slater local [5] and Becke
gradient-corrected [36] exchange functionals, together with the Vosko-Wilk-Nusair
III local [37] and Lee-Yang-Parr nonlocal [38] correlation functionals. B3LYP is used
because of its established accuracy for the thermochemistry of organic reactions. This
will be important for the future investigations of catalyzed organic reactions on the
Pt(001) surface. The spin-unrestricted scheme has been employed, together with the
quadratically-convergent self-consistent field (QCSCF) procedure [39]. For Pt, the
electrons from the 5s2, 5p6, 5d9 and 6s1 shells are treated explicitly using the Gaus-
sian (3s3p2d) basis set [40–42]. For the O atom, the D95++(3df) basis set is applied
[43].

The Pt(001) surface is modelled by two five-atom clusters of different structures.
The clusters with the O atom adsorbed in an exemplary position are presented in
Fig. 1. The first cluster contains all the Pt atoms put in the same plane, whereas
the second one exhibits a pyramidal structure. Distances between the Pt atoms in
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both clusters are characteristic of the face-centred cubic (fcc) Pt lattice and of the
(001) crystal plane. The planar and pyramidal platinum clusters are denoted further
in the paper as Pt5(001) and Pt4+1(001) respectively. Each of the clusters models
reliably one adsorption site of high symmetry, which is placed in the centre of the
cluster. In the case of Pt5(001) such a characteristic site on the central Pt atom is
called the atop site, while for Pt4+1(001) on the subsurface Pt atom – the hollow
site.

(a)

O

(b)

Pt

Pt

Pt

Pt

Pt

Pt

Pt

Pt

Pt*

Pt

O

Fig. 1: Cluster models of the Pt(001) surface with the adsorbed O atom. (a) O on the
planar Pt5(001) cluster. (b) O on the pyramidal Pt4+1(001) cluster. The Pt atom of the
second crystal layer (the subsurface atom) is marked with an asterisk in (b).

The O atom has been adsorbed in a great deal of points above the plane of
the platinum clusters (in the case of Pt4+1(001) above the plane containing four
surface Pt atoms). For each point the height between the O atom and the plane
of the platinum clusters is optimized to obtain the lowest total energy EOPtx(001)

of the OPtx(001) system, where x = 5 or 4 + 1. The optimization is carried out
using the Berny algorithm [44], which calculates the derivatives of total energy with
respect to the coordinates of all atoms. The height which refers to EOPtx(001) is
denoted as zopt. In the course of the optimization, the geometry of Ptx(001) stays
“frozen”. The binding energy (BE) of the O atom on Ptx(001) is calculated as
the difference between EOPtx(001) and the sum of the energies of the free O atom
and the isolated Ptx(001) cluster. The ground state of both clusters is a quintet
and the O atom has a triplet multiplicity. For some adsorption sites, the basis-set
superposition error (BSSE) correction as proposed by Boys and Bernardi [45] has
been also incorporated into the BE values. The atomic electronic charge on the
adsorbed O atom is determined with the help of the electron population analysis
according to Mulliken [46].
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3. Results and discussion

Fig. 2 shows plots of three properties of the O atom adsorbed on the Pt5(001) cluster.
The multiplicity of the OPt5(001) system has been established as a singlet. There is
a plot of the height zopt of the O atom above the cluster plane in Fig. 2a. zopt exhibits
the highest values directly above the Pt atoms. The central Pt atom represents the
atop adsorption position, whose zopt value is equal to 1.758 Å. The surface of the
O-atom BE is depicted in Fig. 2b. All the BE values are negative, thus the atomic
oxygen adsorption is energetically favourable. The adsorption in the atop position is
the least exoenergetic with BE = −0.97 eV (BSSE-corrected BE = −0.80 eV). The
adsorption in sites between two Pt atoms is much more probable.

Intuitively, when an oxygen atom is close to a metal surface, one expects metal
electrons to flow to the electronegative oxygen creating a negative charge on it. It
is confirmed by the Mulliken’s electron population analysis as presented in Fig. 2c.
This figure shows that electronic charge is transferred from the Pt5(001) cluster to
the adsorbate. The same behaviour was observed by Li and Balbuena [48] for the
small platinum clusters of gas-phase geometries which interacted with oxygen. The
electronic charge is moved from the platinum d orbitals to the oxygen p orbitals. As
displayed in Fig. 2c, qm(O) = −0.646 e on the O-atom adsorbed in the atop site.

The electronic charge of the O atom can be connected with the catalytic reac-
tivity of platinum in some organic processes which occur in the presence of oxygen.
According to the Brönsted acid-base formalism, the adsorbed O atom which exhibits
a negative atomic charge acts as a strong Brönsted base. Therefore, it can abstract
easily a proton from other reactant molecule on the catalyst surface, as it is observed
for the dehydrogenation of cyclohexane [49].

The zopt, BE and qm(O) of the O atom on the Pt4+1(001) cluster are presented
in Figs. 3a, 3b and 3c respectively. The adsorption position in the centre of the
cluster corresponds to the hollow site and the atomic oxygen is bound in this site
at zopt = 0.896 Å. The calculations of the O-atom BE have been performed for the
singlet multiplicity of the OPt4+1(001) system. In the hollow site, the BE value is
equal to −0.78 eV (BSSE-corrected BE = −0.62 eV), which is rather far from the
experimental result of ca. −2.40 eV for Pt(001) [50]. The transfer of electronic charge
in this site exceeds one electron, qm(O) = −1.131 e.

It is interesting to investigate the influence of the OPt4+1(001) multiplicity on the
O atom properties. A variety of possible multiplicities originates from the complex
electronic structure of Pt. The properties of the O atom adsorbed on the Pt4+1(001)
cluster and obtained for five different multiplicities of OPt4+1(001) are collected in
Tab. 1. For all the multiplicities, high spin contamination has not been detected. The
multiplicities affect strongly the zopt values. The nonet exhibits the zopt value quite
close to the experimental oxygen-surface distance for Pt(111); there is no referential
result for Pt(001). The higher the O atom adsorbs, the smaller electronic-charge
transfer from the cluster to the adsorbate is observed. For all the multiplicities, the
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(a)

(b)

(c)

Fig. 2: Properties of the O atom adsorbed on the Pt5(001) cluster. Surface plots of the
values of the O atom: (a) height zopt above the cluster plane, (b) binding energy BE on
the cluster and (c) Mulliken’s electronic charge qm(O). For the sake of simplicity, the scale
on the OX and OY axes of all the plots have the range of two units (they are equal to the
Pt lattice constant, 3.9242 Å [47]).
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(b)

(a)

(c)

Fig. 3: Properties of the O atom adsorbed on the Pt4+1(001) cluster. Surface plots of the
values of the O atom: (a) height zopt above the cluster plane, (b) binding energy BE on
the cluster and (c) Mulliken’s electronic charge qm(O). For the sake of simplicity, the scale
on the OX and OY axes of all the plots have the range of [−0.70, 0.70] proportionally to
the range used in Fig. 2. The subsurface Pt atom is marked with an asterisk.
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Tab. 1: Height zopt, BSSE-corrected binding energy BE, and electronic charge qm(O) of
the O atom adsorbed on the Pt4+1(001) cluster for five multiplicities of the OPt4+1(001)
system.

Multiplicity zopt [Å] BSSE-corrected BE [eV] qm(O) [e]

1 0.896 −0.62 −1.131
3 0.902 −1.28 −1.163
5 0.997 −0.77 −0.999
7 1.155 −1.21 −0.768
9 1.337 −1.06 −0.467

calculated BSSE-corrected BE of the O atom remains far from the experimental
value. It unambiguously results from the small number of Pt atoms used in the
cluster. A significant variation of the BE values, as a function of cluster size, was
found by Lin et al. [26].

4. Conclusions

The adsorption of atomic oxygen on Pt(001) has been investigated by means of the
B3LYP hybrid functional. The Pt(001) surface has been modelled by two five-atom
clusters of planar and pyramidal geometries. The adsorption of the O atom on the
clusters is exoenergetic both for the hollow site and the atop position. The Mulliken’s
electron population analysis reveals a significant electronic-charge transfer from the
cluster to the adsorbate. It indicates that the adsorbed O atom acts as a strong
Brönsted base in the catalytic reactions on the Pt(001) surface.
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Poland

Presented by Stanis�law Romanowski at the Session of the Mathematical-Physical
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ADSORPCJA ATOMOWEGO TLENU NA Pt(001).
BADANIA W RAMACH TEORII FUNKCJONA�LÓW GȨSTOŚCI

S t r e s z c z e n i e
W pracy prezentowane sa̧ wstȩpne wyniki obliczeń prowadzonych w ramach teorii

funkcjona�lów gȩstości (DFT) dla adsorpcji atomowego tlenu na Pt(001). Powierzchnia
Pt(001) modelowana jest za pomoca̧ dwóch piȩcioatomowych klasterów o planarnej i pi-
ramidalnej geometrii. W�lasności strukturalne, energetyczne i elektronowe zaadsorbowanego
atomu tlenu zosta�ly określone w celu zbadania oddzia�lywania miȩdzy atomowym adsor-
batem i powierzchnia̧ Pt(001).
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GEOMETRIES AND ENERGETICS OF Pd2, Pt2, Ag2, AND Au2

DIMERS. A BENCHMARK OF NONLOCAL AND HYBRID
DENSITY FUNCTIONALS

Summary

In this work the comparison of the calculated bond lengths, dissociation energies and
harmonic vibrational frequencies of four dimers (Pd2, Pt2, Ag2, Au2), together with the
experimental data is presented. All calculations have been performed by means of a series
of nonlocal and hybrid density functionals combined with the LANL2DZ basis set. The
comparison leads to the conclusion that the BP86, G96P86, B3P86 and BH&H functionals,
in conjunction with LANL2DZ, are superior to the other functionals. The G96P86 and
B3P86 functionals are recommended for the reliable predictions of both geometric as well
as energetic properties of the Pd-, Pt-, Ag- and Au-containing systems, while BP86 rather
for energetic properties and BH&H only for the extremely accurate determination of the
geometries. The geometries and energetics of some excited states of the dimers have also
been computed using these four selected functionals.

1. Introduction

Palladium and platinum are considered to be two of the most important metals in
heterogeneous catalysis because of their rich catalytic power [1, 2]. These metals are
particularly useful for the reactions involving H2. They also find an application as
efficient catalysts in automotive exhaust systems where they reduce toxic pollutants
such as CO, NO and hydrocarbons. On the contrary, silver and gold are stable
and inactive in the reactions with H2, although they are located next to Pd and
Pt in the Periodic Table [3–6]. In the last two decades, bimetallic catalysts have
attracted much attention [7–9] despite the fact that they have been known since the
1960s [10–12]. The combination of neighbouring metals, e.g. PdAg, PdAu, PtAg and
PtAu, leads to the catalysts which have new properties different from pure Pd, Pt,
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Ag and Au metals alone. The bimetallic catalysts exhibit unique selectivity in the
reactions involving H2.

Among various forms of metallic heterogeneous catalysts, clusters have been in
the centre of considerable attention in recent years because they offer the improve-
ment in catalytic activity, selectivity and stability in comparison with the corre-
sponding metallic bulk [13–15]. Moreover, the clusters which consist of only a few
metal atoms exhibit extreme reactivity due to their non-saturated valence. Clus-
ters of various sizes can be generated in a molecular beam using laser-vaporization
techniques. However, detailed spectroscopic investigations are possible mostly for the
smallest metallic clusters such as dimers and trimers. A few experimental works have
been addressed to the investigations on the Pd2 [16, 17], Pt2 [18–21], Ag2 [22–24]
and Au2 [25] dimers. Some older works on these dimers have been presented in the
review by Morse [26].

A large number of theoretical studies have been devoted to Pd2 [27–32], Pt2 [28,
31, 33–37], Ag2 [31, 38–46] and Au2 [28, 31, 36, 37, 39, 45–51]. On the quantum-
chemical side, metallic dimers are quite interesting since they are the simplest sys-
tems with a metal-metal bond. The description of the interaction between the atoms
of the dimers seems to be particularly challenging due to:

• the large number of electrons,

• correlation effects,

• relativistic effects,

• the existence of several electronic molecular states with different spin multi-
plicities and geometries.

The relativistic effects such as mass-velocity, Darwin and spin-orbit corrections make
substantial contributions to the interaction in the heavy-metal dimers, Pt2 and Au2.

The Pd2, Pt2, Ag2 and Au2 dimers have been investigated by means of a variety
of computational methods. Examples of the methods used in recent studies include
embedded-atom model (EAM) [35], tight-binding molecular dynamics (TBMD) [43],
Möller-Plesset (MP) perturbation theory [31], Douglas-Kroll-Hess (DKH) coupled-
cluster method [51] and density functional theory (DFT) within the relativistic [46]
as well as nonrelativistic [31, 32, 36, 37, 44, 45] schemes. Nonrelativistic DFT gener-
ally provides a very good balance between accuracy and computational cost and, as
a consequence, the majority of the studies have been carried out within the frame-
work of this method, spanning various nonlocal [32, 36, 37, 44, 45] and hybrid [31]
density functionals. However, it is not clear which combination of the exchange and
correlation components of nonlocal and hybrid functionals is most appropriate for
the investigation of the metallic dimers.

In this work the Pd2, Pt2, Ag2 and Au2 dimers are examined within twelve
nonlocal and seven hybrid density functionals to establish the best ones for the
calculations of the geometric and energetic properties of these dimers. In particu-
lar, a proper and careful choice of the functionals is needed for the future study of
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bimetallic molecules (PdAg, PdAu, PtAg and PtAu) to elucidate their catalytic ac-
tivity, selectivity and stability. The search for the best combinations of the exchange
and correlation components in the density functionals is based on the comparison of
the calculated bond lengths, re, dissociation energies, D0, and harmonic vibrational
frequencies, ωe, with the corresponding experimental data.

2. Method

DFT methods, as implemented in Gaussian 98 package [52], have been used for the
calculations of re, D0 and ωe for the Pd2, Pt2, Ag2 and Au2 dimers. The nonlocal
density functionals included in this work are: BLYP, BP86, BPW91, PW91LYP,
PW91P86, PW91PW91, MPWLYP, MPWP86, MPWPW91, G96LYP, G96P86 and
G96PW91. The list of hybrid density functionals encompasses seven representa-
tives, which are the functionals pre-defined in Gaussian 98: B1LYP, B3LYP, B3P86,
B3PW91, BH&H, BH&HLYP and MPW1PW91. All the abbreviations above are
explained in the Gaussian 98 help files [52], also available via the Internet [53].

In regards to basis set, the effective core potential (ECP) of Hay and Wadt in
conjunction with the valence double-zeta Gaussian-type orbitals (GTO) has been
employed [54–56]. This basis set is commonly denoted as the Los Alamos National
Laboratory double-zeta (LANL2DZ). ECPs are often used to describe heavy atoms
such as Pd, Pt, Ag and Au [36, 37]. The replacement of core electrons with an energy
potential, termed as a pseudopotential, reduces significantly computational cost. In
the case of the LANL2DZ basis set only the innermost core electrons are assigned to
the ECP. Forty-six and sixty innermost core electrons are replaced by the ECP for the
fourth-row (Pd, Ag) and fifth-row (Pt, Au) metals respectively. The mass-velocity
and Darwin relativistic effects are also incorporated into the ECP. The outer core
electrons, ns2np6, and the valence electrons, ndq(n+ 1)sr, are treated explicitly.

The re values of the dimers are obtained by gas-phase geometry optimizations
using a standard gradient technique with a tight convergence criterion. For the op-
timized bond lengths the harmonic vibrational frequencies are calculated as the
second-order derivatives of total energy with respect to the atomic coordinates (Hes-
sian). Later, for Pd2, Pt2, Ag2 and Au2, the dissociation energies are determined
and the following dissociation limits are taken into account: 1S for palladium (1S
arises from the 4d10 electronic configuration), 3D for platinum (5d96s1), and 2S for
silver (4d105s1) as well as gold (5d106s1). The basis-set superposition error (BSSE)
correction [57] and the zero-point energy (ZPE) are incorporated into the D0 values.

3. Results and discussion

In order to assess the ability of various nonlocal and hybrid density functionals
(combined with the LANL2DZ basis set) to predict the geometries and energetics
of the Pd2, Pt2, Ag2 and Au2 dimers accurately, the calculated re, D0 and ωe have
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been compared with the corresponding experimental data (see Table 1). The re, D0

and ωe values that are used for the comparison have been calculated for the dimers
in their electronic ground states. For Pd2 and Pt2, four electronic molecular states
have been taken into consideration, while for Ag2 and Au2 only two due to their
relatively simple electronic configurations (the occupied d shells). The investigated
electronic states of the dimers, together with the corresponding configurations of the
valence electrons, are presented in Table 2. All the molecular states shown in this
table have been examined by means of a series of the nineteen density functionals
(twelve nonlocal plus seven hybrid). For the sake of brevity, only the results which
have been computed by some selected density functionals are reported further in
the text and tables. For each dimer the ground state is ascribed to the state of
the lowest total electronic energy whose value has been obtained from the geometry
optimization. The 3

∑+
u state is predicted to be the ground state of the Pd2 dimer.

In the case of Pt2, all the functionals establish the ground state as 3
∑−

g (ππ). Ag2

and Au2 exhibit the same singlet ground state, namely the 1
∑+

g one.

Tab. 1: Experimental bond lengths, re, dissociation energies, D0, and harmonic vibrational
frequencies, ωe, of Pd2, Pt2, Ag2 and Au2.

Dimer re [Å] D0 [eV] ωe [cm−1]

Pd2 2.48 [58] 1.03 [16] 210.0 [17]
Pt2 2.333 [18] 3.14 [19] 222.5 [20]
Ag2 2.530 [22] 1.65 [26] 192.4 [58]
Au2 2.472 [58] 2.29 [58] 190.9 [58]

It is desirable to focus on some details of the statistical approach used to assess
the precision of the functionals. To compare the calculated re, D0 and ωe with the
corresponding experimental values, the standard deviations in the bond lengths,
σ(re), the dissociation energies, σ(D0), and the harmonic vibrational frequencies,
σ(ωe), have been determined for each functional. The standard deviations are defined
below:

σ(re) =

√√√√√
n∑

i=1

(
rcalcde,i − rexptl

e,i

)2

(n− 1)
,(1)

σ(D0) =

√√√√√
n∑

i=1

(
Dcalcd

0,i −Dexptl
0,i

)2

(n− 1)
,(2)

σ(ωe) =

√√√√√
n∑

i=1

(
ωcalcd

e,i − ωexptl
e,i

)2

(n− 1)
,(3)
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Tab. 2: Electronic configurations of the investigated molecular states of Pd2, Pt2, Ag2 and
Au2.

Dimer State Configuration(1)

1∑+
g 1σ2

g1σ2
u2σ2

g2σ2
u3σ2

g3σ2
u1π4

u1π4
g2π4

u2π4
g1δ4

g1δ4
u

3
∑+

u 1σ2
g1σ2

u2σ2
g2σ2

u3σ2
g3σ1

u4σ1
g1π4

u1π4
g2π4

u2π4
g1δ4

g1δ4
u

Pd2
3
∑−

g (ππ) 1σ2
g1σ2

u2σ2
g2σ2

u3σ2
g3σ2

u4σ2
g1π4

u1π4
g2π4

u2π2
g1δ4

g1δ4
u

3∑−
g (δδ) 1σ2

g1σ2
u2σ2

g2σ2
u3σ2

g3σ2
u4σ2

g1π4
u1π4

g2π4
u2π4

g1δ4
g1δ2

u
1∑+

g 1σ2
g1σ2

u2σ2
g2σ2

u3σ2
g3σ2

u1π4
u1π4

g2π4
u2π4

g1δ4
g1δ4

u

3∑+
u 1σ2

g1σ2
u2σ2

g2σ2
u3σ2

g3σ1
u4σ1

g1π4
u1π4

g2π4
u2π4

g1δ4
g1δ4

u

Pt2
3∑−

g (ππ) 1σ2
g1σ2

u2σ2
g2σ2

u3σ2
g3σ2

u4σ2
g1π4

u1π4
g2π4

u2π2
g1δ4

g1δ4
u

3∑−
g (δδ) 1σ2

g1σ2
u2σ2

g2σ2
u3σ2

g3σ2
u4σ2

g1π4
u1π4

g2π4
u2π4

g1δ4
g1δ2

u
1
∑+

g 1σ2
g1σ2

u2σ2
g2σ2

u3σ2
g3σ2

u4σ2
g1π4

u1π4
g2π4

u2π4
g1δ4

g1δ4
u

Ag2
3∑+

u 1σ2
g1σ2

u2σ2
g2σ2

u3σ2
g3σ2

u4σ1
g4σ1

u1π4
u1π4

g2π4
u2π4

g1δ4
g1δ4

u
1∑+

g 1σ2
g1σ2

u2σ2
g2σ2

u3σ2
g3σ2

u4σ2
g1π4

u1π4
g2π4

u2π4
g1δ4

g1δ4
u

Au2
3∑+

u 1σ2
g1σ2

u2σ2
g2σ2

u3σ2
g3σ2

u4σ1
g4σ1

u1π4
u1π4

g2π4
u2π4

g1δ4
g1δ4

u

(1) configurations of the valence electrons, which are not incorporated into the ECP.

where n denotes the number of the dimers, n = 4, and the upper right indices, namely
“calcd” and “exptl”, stand for the calculated and experimental values respectively.
Table 3 lists the standard deviations in re, D0 and ωe for the twelve nonlocal and
seven hybrid density functionals.

As shown in Table 3, σ(re) ranges from 0.029 to 0.098 Å. The minimal σ(re) is
assigned to the BH&H hybrid functional. Considering only the nonlocal functionals,
the G96P86 one turns out most accurate for the prediction of the geometries of
Pd2, Pt2, Ag2 and Au2. In the case of σ(D0), the nonlocal functionals yield results
closer to the experiment than those of the hybrid functionals. For the nonlocal
density functionals, the majority of the σ(D0) values is clustered around 0.24 eV.
The same lowest value of σ(D0) is given by three nonlocal functionals, namely BP86,
MPWLYP and MPWPW91. Among the hybrid functionals, B3P86 exhibits the best
accuracy (the smallest value of the σ(D0)). BH&H, which has described excellently
the geometries of the dimers, is less appropriate for the prediction of energetics.
The σ(D0) obtained by means of this functional exceeds the σ(D0) of BP86 by over
150 %. For the nonlocal functionals the standard deviations of ωe range from 13.6
to 23.5 cm−1, with most around 14 cm−1. The hybrid density functionals provide
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Tab. 3: Standard deviations in bond lengths, σ(re), dissociation energies, σ(D0), and har-
monic vibrational frequencies, σ(ωe), of Pd2, Pt2, Ag2 and Au2.

Functional σ(re) [Å] σ(D0) [eV] σ(ωe) [cm−1]

BLYP 0.098 0.24 23.5
BP86 0.059 0.22 14.4

BPW91 0.063 0.24 15.6
PW91LYP 0.093 0.23 21.8
PW91P86 0.055 0.32 13.6

PW91PW91 0.059 0.25 14.5
MPWLYP 0.096 0.22 22.8
MPWP86 0.058 0.25 14.0

MPWPW91 0.062 0.22 15.2
G96LYP 0.082 0.32 20.0
G96P86 0.045 0.24 14.1

G96PW91 0.048 0.31 14.4
B1LYP 0.090 0.65 21.8
B3LYP 0.083 0.51 20.3
B3P86 0.049 0.36 17.4

B3PW91 0.058 0.48 17.8
BH&H 0.029 0.56 27.8

BH&HLYP 0.087 1.15 24.4
MPW1PW91 0.057 0.53 18.9

Tab. 4: Electronic transition energies, Te, bond lengths, re, and harmonic vibrational fre-
quencies, ωe, for the low-lying molecular states of Pd2 at the BP86, G96P86, B3P86 and
BH&H levels. For the ground state, dissociation energies, D0, also displayed.

3∑+
u

1∑+
g

Functional Te re ωe D0 Te re ωe

[cm−1] [Å] [cm−1] [eV] [cm−1] [Å] [cm−1]

BP86 0 2.504 208.7 1.22 3023 2.700 154.5
G96P86 0 2.492 212.4 1.09 2895 2.690 155.5
B3P86 0 2.494 215.4 0.83 2524 2.725 138.6
BH&H 0 2.477 226.4 0.81 2727 2.720 135.8

3
∑−

g (ππ) 3
∑−

g (δδ)

BP86 5028 2.387 254.0 – 13458 2.517 207.5
G96P86 5663 2.375 259.4 – 14359 2.502 212.1
B3P86 8776 2.357 271.2 – 19349 2.491 219.5
BH&H 11700 2.311 302.1 – 25332 2.441 246.9

the worse accuracy of the calculated ωe values than the nonlocal functionals. Such a
behaviour is similar to that observed for the σ(D0) values. B3P86 exhibits one more
time the lowest σ(ωe) among the seven hybrid functionals. Taking all the nineteen
density functionals into account, one can notice that the use of the Lee-Yang-Parr’s
formulation of electronic correlation causes an increase of σ(ωe).
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Tab. 5: The same as in Table 4 but for Pt2.

3∑−
g (ππ) 3∑−

g (δδ)

Functional Te re ωe D0 Te re ωe

[cm−1] [Å] [cm−1] [eV] [cm−1] [Å] [cm−1]

BP86 0 2.372 232.3 3.33 6781 2.465 202.4
G96P86 0 2.362 237.5 3.28 7026 2.453 206.3
B3P86 0 2.352 246.4 2.70 9408 2.445 212.0
BH&H 0 2.325 267.3 2.22 12587 2.413 231.3

3∑+
u

1∑+
g

BP86 7646 2.523 187.3 – 16767 2.670 153.5
G96P86 7583 2.511 191.6 – 16851 2.656 156.2
B3P86 4388 2.520 189.3 – 17400 2.654 157.1
BH&H 1042 2.515 193.4 – 19280 2.648 154.9

Tab. 6: The same as in Table 4 but for Ag2.

1
∑+

g
3
∑+

u

Functional Te re ωe D0 Te re ωe

[cm−1] [Å] [cm−1] [eV] [cm−1] [Å] [cm−1]

BP86 0 2.578 188.4 1.65 13298 3.056 64.6
G96P86 0 2.562 193.7 1.52 12720 3.070 61.2
B3P86 0 2.576 189.7 1.54 12487 3.145 49.3
BH&H 0 2.556 197.9 1.63 12699 3.052 60.0
CI [40] 0 2.620 187.3 1.67 – 3.251 54.6

Tab. 7: The same as in Table 4 but for Au2.

1
∑+

g
3
∑+

u

Functional Te re ωe D0 Te re ωe

[cm−1] [Å] [cm−1] [eV] [cm−1] [Å] [cm−1]

BP86 0 2.549 168.4 2.03 14351 2.862 86.3
G96P86 0 2.536 171.9 1.92 14190 2.846 86.8
B3P86 0 2.539 173.5 1.91 14519 2.931 70.9
BH&H 0 2.515 186.9 2.07 15107 2.913 71.5

B3PW91 [49] 0 2.547 – 1.90 14180 2.961 –

To sum up the paragraph above, it is deduced from the statistical approach that,
among the nonlocal functionals, the BP86 and G96P86 ones are recommended for
the prediction of the geometries and energetics of the Pd2, Pt2, Ag2 and Au2 dimers.
BP86 together with MPWLYP and MPWPW91 exhibit the smallest σ(D0) but, in
addition, BP86 yields smaller standard deviations of the geometric and vibrational
properties than MPWLYP and MPWPW91. The G96P86 functional reproduces the
bond lengths of the dimers very well. In the case of the hybrid functionals, the B3P86
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one should be employed for the calculations of D0 and ωe. The σ(re) value obtained
by this functional remains only slightly greater than that of G96P86. The BH&H
functional computes the bond lengths in excellent agreement with the experiment.
However, its σ(D0) and σ(ωe) indicate a rather poor performance.

The properties of all the investigated electronic molecular states calculated by
means of the four selected functionals are presented in Tables 4–7. The dissociation
energies have been determined only for the ground states of the dimers. The tran-
sition energies, Te, from the ground state to the excited ones are also displayed in
the tables. In the cases of Ag2 and Au2, the results are compared with some earlier
theoretical investigations [40, 49].

To conclude, the comparison of the standard deviations of the calculated bond
lengths, dissociation energies and harmonic vibrational frequencies with respect to
the corresponding experimental values shows that the G96P86 and B3P86 density
functionals are recommended for the accurate predictions of all these three properties
for the Pd2, Pt2, Ag2 and Au2 dimers. BP86 should be employed for the reliable
determination of D0 and ωe rather than for re, whereas the use of BH&H is limited
to extremely accurate calculations of the geometries. These four functionals will be
used in the future study of bimetallic molecules such as PdAg, PdAu, PtAg and
PtAu.
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Chem. Phys. 98 (1993), 2699.

[23] F. Federmann, K. Hoffmann, N. Quaas, and J. P. Toennies, Eur. Phys. J. D 9 (1999),
11.

[24] I. Rabin, W. Schulze, and G. Ertl, J. Chem. Phys. 108 (1998), 5137.

[25] G. A. Bishea and M. D. Morse, ibid. 95 (1991), 5646.

[26] M. D. Morse, Chem. Rev. 86 (1986), 1049.

[27] K. Balasubramanian, J. Chem. Phys. 89 (1988), 6310.

[28] M. Harada and H. Dexpert, J. Phys. Chem. 100 (1996), 565.

[29] G. Valerio and H. Toulhoat, ibid. 100 (1996), 10827.

[30] I. Efremenko and M. Sheintuch, Surf. Sci. 414 (1998), 148.

[31] S. Yanagisawa, T. Tsuneda, and K. Hirao, J. Comput. Chem. 22 (2001), 1995.

[32] W. Zhang, Q. Ge, and L. Wang, J. Chem. Phys. 118 (2003), 5793.

[33] K. Balasubramanian, ibid. 87 (1987), 6573.

[34] S. H. Yang, D. A. Drabold, J. B. Adams, P. Ordejón, and K. Glassford, J. Phys.: Con-
dens. Matter 9 (1997), L39.
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[41] V. Bonačić-Koutecký, J. Pittner, and M. Boiron, ibid. 110 (1999), 3876.

[42] Z. F. Liu, W. L. Yim, J. S. Tse, and J. Hafner, Eur. Phys. J. D 10 (2000), 105.

[43] J. Zhao, ibid. 14 (2001), 309.

[44] R. Fournier, J. Chem. Phys. 115 (2001), 2165.
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GEOMETRIA I W�LASNOŚCI ENERGETYCZNE DIMERÓW
Pd2, Pt2, Ag2 I Au2. TEST PORÓWNAWCZY FUNKCJONA�LÓW
NIELOKALNYCH ORAZ HYBRYDOWYCH

S t r e s z c z e n i e
W pracy prezentowane jest porównanie obliczonych d�lugości wia̧zania, energii dyso-

cjacji oraz harmonicznej czȩstości drgań czterech dimerów (Pd2, Pt2, Ag2, Au2) z danymi
eksperymentalnymi. Wszystkie obliczenia wykonano za pomoca̧ szeregu funkcjona�lów nie-
lokalnych oraz hybrydowych w po�la̧czeniu z baza̧ funkcyjna̧ LANL2DZ. Przeprowadzone
porównanie prowadzi do wniosku, że funkcjona�ly BP86, G96P86, B3P86 i BH&H w po�la̧cze-
niu z baza̧ LANL2DZ okazuja̧ siȩ dok�ladniejsze od innych. Funkcjona�ly G96P86 i B3P86 sa̧
polecane do dok�ladnego przewidywania w�lasności geometrycznych i energetycznych uk�la-
dów zawieraja̧cych Pd, Pt, Ag i Au. Funkcjona�l BP86 stosować można raczej tylko do
dok�ladnych obliczeń w�lasności energetycznych a funkcjona�l BH&H wy�la̧cznie do określania
geometrii z bardzo wysoka̧ dok�ladnościa̧. Przy pomocy czterech powyższych funkcjona�lów
wyznaczona zosta�la geometria i energetyka niektórych stanów wzbudzonych badanych di-
merów.
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