
B U L L E T I N

SÉRIE:

RECHERCHES SUR LES DÉFORMATIONS

Comité de Rédaction de la Série

P. DOLBEAULT (Paris), H. GRAUERT (Göttingen),
O. MARTIO (Helsinki), W.A. RODRIGUES, Jr. (Campinas, SP), B. SENDOV (Sofia),

C. SURRY (Font Romeu), P.M. TAMRAZOV (Kyiv), E. VESENTINI (Torino),
L. WOJTCZAK (£ódŸ), Ilona ZASADA (£ódŸ)

Volume LX, no. 2

£ÓD� 2010

JULIAN £AWRYNOWICZRédacteur en chef et de la Série:

N

DE LA SOCIÉTÉ DES SCIENCES

ET DES LETTRES DE £ÓD�

Secrétaire de la Série:
JERZY RUTKOWSKI



������� �	
�����
	 ����	
�
��������� ��	
� �� �� ���������	������� ��

��� ����   � �� ��� !"# ����   � ��  �
�$%&�	"' �(	"�)�*��+ ��� ����   � �� �,

��-"�+ �).�)��	&�$

/(	")� & $�-�*0" 1)")���0" ��)����%���" 2"��� � �&��)�*��" /('�&�3�

�� 4��2 ����5 ,��

/(	")�� ��
2"��"	 ��� �3&�

���"	 ��-$���%��(+ 6�1" 7��"%*&(�

8%�� � �$%"�"+ ������� ��*�
��� 9: ��	
� �� ;"�"�" ��

��� <�,  �� �� �� ,9
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Dariusz Partyka

Faculty of Mathematics and Natural Sciences
The John Paul II Catholic University of Lublin

Al. Rac�lawickie 14, P.O. Box 129, PL-20-950 Lublin, Poland
State University of Applied Science in Che�lm, Pocztowa 54

PL-22-100 Che�lm, Poland, e-mail: partyka@kul.lublin.pl
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seront préparés par la rédaction. Il faut fournir le texte original qui ne peut
contenir plus de 15 pages (plus 2 copies).

4. Comme des articles seront reproduits par un procédé photographique, les au-
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texte ou une formule par l’alinéa il faut taper 6 mm ou 2 cm de la marge
gauche, respectivement.
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10. Les auteurs recevront 20 tirés à part à titre gratuit.
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Fig. 1: The figure caption is located below the figure itself; it is automatically centered and
should be typeset in small letters.

2.2. Example of a table

Tab. 1: The table caption is located above the table itself; it is automatically centered and
should be typeset in small letters.

Description 1 Description 2 Description 3 Description 4

Row 1, Col 1 Row 1, Col 2 Row 1, Col 3 Row 1, Col 4
Row 2, Col 1 Row 2, Col 2 Row 2, Col 3 Row 2, Col 4

Name and surname of the authors

TITLE – INSTRUCTION FOR AUTHORS
SUBMITTING THE PAPERS FOR BULLETIN

Summary

Abstract should be written in clear and concise way, and should present all the main

points of the paper. In particular, new results obtained, new approaches or methods applied,

scientific significance of the paper and conclusions should be emphasized.

1. General information

The paper for BULLETIN DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES
DE �LÓDŹ should be written in LaTeX, preferably in LaTeX 2e, using the style (the
file bull.cls).

2. How to prepare a manuscript

To prepare the LaTeX 2e source file of your paper, copy the template file in-
str.tex with Fig1.eps, give the title of the paper, the authors with their affilia-
tions/addresses, and go on with the body of the paper using all other means and
commands of the standard class/style ‘bull.cls’.

2.1. Example of a figure

Figures (including graphs and images) should be carefully prepared and submitted
in electronic form (as separate files) in Encapsulated PostScript (EPS) format.



3. How to submit a manuscript

Manuscripts have to be submitted in electronic form, preferably via e-mail as at-
tachment files sent to the address zofija@mvii.uni.lodz.pl. If a whole manuscript
exceeds 2 MB composed of more than one file, all parts of the manuscript, i.e.
the text (including equations, tables, acknowledgements and references) and figures,
should be ZIP-compressed to one file prior to transfer. If authors are unable to send
their manuscript electronically, it should be provided on a disk (DOS format floppy
or CD-ROM), containing the text and all electronic figures, and may be sent by
regular mail to the address: Department of Solid State Physics, University of
Lodz, Bulletin de la Société des Sciences et des Lettres de �Lódź, Pomorska
149/153, 90-236 Lodz, Poland.
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Yuri Zelinskii

CONTINUOUS MAPPINGS BETWEEN DOMAINS
OF MANIFOLDS

Summary
The main question considered in this paper relates to the desire to establish with what

the minimum one can limit the number of preimages of an arbitrary point of the image,
if the global degree of a given mapping of two domains is known a priori. In addition, we
assume that this mapping realizes this minimum. Estimates in one direction, namely the
lower possible value of this minimum, where obtained by the author in 1975 and 2005.

1.

We say that a mapping f : X → Y of topological spaces is finite-to-one, if the
inverse image of an arbitrary point contains a finite or empty set of points. In what
follows we assume that on the considered topological spaces is given the structure of
manifolds and we have continuous mappings of these manifolds, or their subdomains.
Also, we suppose that the topological degree of mapping degf [1] is defined.

Theorem 1 [3]. Let f : D → D1 be a continuous mapping (D and D1 are open
domains in the corresponding manifolds Mn and Nn) such that

1. f(∂D) ∩ f(D) = ∅, and
2. Hn−1

c (∂D;Z2) �= 0 and the mapping f∗ : Hn−1
c (f∂D;Z2) → Hn−1

c (∂D;Z2)
induced by the restriction f |∂D is an epimorphism. Then either f |D is a homeomor-
phism, or there is a point y ∈ IntD1 having at least three preimages in D. Yet if the
mapping f is zero-dimensional, then in the latter case the set A = {y | f−1y consists
of at least three points} has dimension n.
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Theorem 1 provides in particular an answer to one of the problems posed by
A. Kosinski [2] for the mapping of an n-dimensional Möbius strip.

2.

A mapping of a domain is called interior mapping if the image of every open set is
open, and the preimage of an arbitrary point consists of isolated points.

Theorem 2 [4]. Every proper mapping of a domain of an n-dimensional manifold
onto a domain of another n-dimensional manifold of degree k either is an interior
mapping or there exists a point in the image that possesses not less than |k| + 2
original preimages. If the restriction f to the interior of the domain is the zero-
dimensional mapping, than in the latter case mentioned above, the set of points of
the image which do not possess less than |k|+2 original preimages contains a subset
of complete dimensionality n.

We say that a mapping is of class Km, if the inverse image of each point contains
no more thanm points. In the case when we wish to fix the spaces under the mapping,
we use the notation Km(X,Y ).

Let X = Mn be a closed n-dimensional manifold, as well Y = Bn be the ball in
an n-dimensional Euclidean space. In [4] it is found that for mappings of arbitrary
closed two-dimensional manifolds in 2-disc class K2(M2, B2) is not empty.

Consider a projective space RPn as the ball Bn as identified with the antipodal
points of the boundary sphere Sn−1. Then the mapping h, which is inside the sphere
is given as

h(x1, x2, x3, . . . , xn) = (x1, |x2|, |x3|, . . . , |xn|),
but on the sphere it identifies all points of the form (±x1,±x2,±x3, . . . ,±xn) and
has multiplicity 2n−1.

Corollary 1. The classes Km(RPn, Bn) are nonempty for m > 2n−1.

3.

According to [6] in the mapping h there are points of a local homeomorphism.
Suppose, without loss of generality that x0 is such a point. Choose a neighbourhood
U(x0) which is mapped under the mapping h homeomorphic to a circular neighbour-
hood of the point h(x0). Assume that the ball Bn is embedded in an n-dimensional
sphere Sn. If now in the neighbourhood U(x0), we change the mapping h to ϕh,
where ϕ is the inversion relative to the boundary sphere ∂hU(x0), and in the com-
plement to U(x0) we leave the mapping h, then in general we obtain a map g of
the projective space RPn to the whole sphere Sn, which is of degree deg g = 1. It
is obvious that the multiplicity of such a mapping as compared with the mapping h
will increase no more than by one. Thus, we have the following statement:
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Theorem 3. In the class of mappings of the projective space on the sphere Sn of
the degree one there is a mapping belonging to the class Km(RPn, Sn) with m =
2n−1 + 1.

The question of reducing the assessment of m for n > 2 remains an open problem;
for n = 2 our estimate is precise, as follows from Theorems 2 and 3.

Unsolved problems

1. Does there exist a mapping of the n-dimensional projective space on an n-
dimensional sphere such that every point of the image has no more then three
preimage points for n ≥ 3 ?

2. Does there exist a mapping of the n-dimensional projective space in an n-
dimensional sphere such that every point of the image has no more then two
preimage points for n ≥ 3 ?

3. Do there exist for every proper mapping f : D → D1 (D, D1 being domains of
n-dimensional manifolds) a proper mapping g homotopic to f such that every
point of the image g(D) has no more then |degf | + 2 preimage points?

Let f be a continuous mapping defined on the boundary of the domain D into
the domain D1 of an n-dimensional manifold. We also assume that f belongs to
Kk(∂D,D1).

4. Find conditions for the existence of a continuous extension of f to the whole
domain, so that f |IntD be an interior mapping.

5. Find conditions for the existence of a continuous extension of f to the whole
domain, which belongs to Km(D,D1), where m is a finite number.

6. Find conditions for the existence of a continuous extension of f to the whole
domain, which belongs to Km(D,D1), where m < k + 2.
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O ODWZOROWANIACH CIA̧G�LYCH OBSZARÓW
NA ROZMAITOŚCIACH

S t r e s z c z e n i e
Podstawowe zagadnienie rozważane w tej pracy dotyczy uzyskania minimum liczb prze-

ciwobrazów dowolnego punktu obrazu przy odwzorowaniu dwóch obszarów na siebie, przy
czym znamy a priori stopień odwzorowania. Dodatkowo zak�ladamy, że rozważane od-
wzorowanie realizuje to minimum. Oszacowania z jednej strony, a mianowicie najmniejszej
z możliwych wartości omawianego minimum, by�ly otrzymane przez autora w latach 1975
i 2005.
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Arezki Touzaline

ON THE SOLVABILITY OF A QUASISTATIC CONTACT PROBLEM
FOR ELASTIC MATERIALS

Summary
We consider a quasistatic contact problem between a linear elastic body and a founda-

tion. The contact is modelled with normal compliance such that the penetration is restricted
with unilateral constraint and the associated version of Coulomb’s law of dry friction. Under
a smallness assumption on the friction coefficient, we establish the existence of a weak so-
lution to the problem. The proof is based on arguments of time-dicretization, compactness
and lower semicontinuity.

1. Introduction

Contact problems involving deformable bodies are quite frequent in the industry as
well as in daily life and play an important role in structural and mechanical sys-
tems. Contact processes involve a complicated surface phenomena, and are modeled
with highly nonlinear initial boundary value problems. Taking into account vari-
ous frictional contact conditions associated with behavior laws becoming more and
more complex leads to the introduction of new and non standard models, expressed
by the aid of evolution variational inequalities. A first attempt to study frictional
contact problems within the framework of variational inequalities was made in [6].
The mathematical, mechanical and numerical state of the art can be found in [13].
In [9] we find a detailed analysis of the contact problem in linear elasticity with
the mathematical and numerical studies. In this paper we consider a quasistatic
contact problem between a linear elastic body and an obstacle say a foundation.
The contact is modelled with normal compliance similar to the one in [8] such that
the penetration is restricted with unilateral constraint and the associated version of
Coulomb’s law of dry friction. Under this compliance condition the interpenetration
of the body’s surface into the foundation is allowed and me justified by considering
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the interpenetration and deformation of surface asperities. On the other hand we
want to point out the physical interest of the model studied here. Indeed, before
the apparition of [8], it was well known that any restriction of the penetration was
made in the compliance models. However according to [8], the method presented
here considers a compliance model in which the compliance term doesn’t represent
necessarily an important perturbation of the original problem without contact. This
will help us to study the models, where a strictly limited penetration is performed
with the limit procedure to the Signorini contact problem. Here we recall that for
linear elastic materials the quasistatic contact problem using a normal compliance
law has been studied in [1] by considering incremental problems and in [10] by
another method using a time-regularization. The quasistatic contact problem with
local or nonlocal friction has been solved respectively in [11] and in [4] by using
a time-discretization. In [2] the quasistatic contact problem with Coulomb friction
was solved by an established shifting technique used to obtain increased regularity
at the contact surface and by the aid of auxiliary problems involving regularized
friction terms and a so-called normal compliance penalization technique. In vis-
coelasticity, the quasistatic contact problem with normal compliance and friction
has been solved in [12]. In [7] the authors resolve the quasistatic contact problems
in viscoelasticity and viscoplasticity. Carrying out the variational analysis, the au-
thors systymatically use results on elliptic and evolutionary variational inequalities,
convex analysis, nonlinear equations with monotone operators, and fixed points of
operators. In [5] a quasistatic unilateral contact problem with friction and adhesion
was studied and an existence result of a weak solution was established for a friction
coefficient sufficiently small. In this paper we propose a variational formulation writ-
ten in the form of two variational inequalities. By means of Euler’s implicit scheme
as in [4], the quasistatic contact problem leads us to solve a well-posed variational
inequality at each time step. Finally under a smallness assumption on the coefficient
of friction we prove by using lower semicontinuity and compactness arguments that
the limit of the discrete solution is a solution to the continuous problem.

2. Variational formulation

Let Ω ⊂ R
d; (d = 2, 3), be a domain, with a Lipschitz boundary Γ, initially occupied

by a linear elastic body. Γ is partitioned into three measurable parts such that
Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄3 where Γ1, Γ2, Γ3 are disjoint open sets and meas (Γ1) > 0. The
body is subjected to volume forces of density ϕ1, prescribed zero displacements and
tractions ϕ2 on the part Γ1 and Γ2, respectively. On Γ3 the body is in unilateral and
frictional contact with finite penetration with a foundation.

Under these conditions, the classical formulation of the mechanical problem of
frictional contact of the linear elastic body is the following.
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Problem P1. Find a displacement field u : Ω × [0, T ] → R
d such that

σ = Eε (u) in Ω × (0, T ) ,(2.1)

divσ + ϕ1 = 0 in Ω × (0, T ) ,(2.2)

u = 0 on Γ1 × (0, T ) ,(2.3)

σν = ϕ2 on Γ2 × (0, T ) ,(2.4)

uν ≤ g, σν + p (uν) ≤ 0, (σν + p (uν)) (uν − g) = 0 on Γ3 × (0, T ) ,(2.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|στ | ≤ μp (uν)

|στ | < μp (uν) =⇒ u̇τ = 0

|στ | = μp (uν) =⇒ ∃λ ≥ 0 s.t. στ = −λu̇τ

on Γ3 × (0, T ) ,(2.6)

u(0) = u0 in Ω.(2.7)

Here (2.1) is the elastic constitutive law in which σ denotes the stress tensor and
E the fourth order tensor of elasticity coefficients, (2.2) represents the equilibrium
equation, (2.3) and (2.4) are the displacement-tractions boundary conditions and,
finally, the function u0 denotes the initial displacement. We make some comments
on the contact conditions (2.5) and (2.6) in which σν denotes the normal stress, p
is a prescribed nonnegative function, uν is the normal displacement, g is a positive
constant which denotes the maximum value of the penetration, στ represents the
tangential traction and u̇τ represents the tangential velocity. Indeed, when uν < 0
i.e. when there is separation between the body and the obstacle then the condition
(2.5) combined with hypothese (2.13) shows that the reaction of the foundation
vanishes (since σν = 0). When 0 ≤ uν < g then −σν = p (uν) which means that the
reaction of the foundation is uniquely determined by the normal displacement. When
uν = g then −σν ≥ p (g) and σν is not uniquely determined. We note then when
g = 0 and p = 0 then the condition (2.5) becomes the classical Signorini contact
condition without a gap

uν ≤ 0, σν ≤ 0, σνuν = 0,

and when g > 0 and p = 0, condition (2.5) becomes the classical Signorini contact
condition with a gap:

uν ≤ g, σν ≤ 0, σν (uν − g) = 0.

The last two conditions are used to model the unilateral conditions with a rigid
foundation.

Conditions (2.6) represent a version of Coulomb’s law of dry friction in which
p is a prescribed nonnegative function, the so-called friction bound. The tangential
shear cannot exeed the maximal frictional resistance μp (uν). Then, if the strict
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inequality is satisfied, the surface adheres to the foundation and is in the so-called
stick state, and when equality is satisfied there is relative sliding, the so-called slip
state. Examples of normal compliance functions can be found in [1, 8, 12].
In the study of the mechanical problem P1 we adopt the following notations and
hypotheses:

The strain tensor is

ε (u) = (εij (u)) =
1
2

(ui,j + uj,i) ,

where

ui,j =
∂ui

∂xj

and Sd denotes the space of second order symmetric tensors in R
d. In (2.6) and

below, a dot above a variable represents its derivative with respect to time.
To proceed with the variational formulation, we need some function spaces:

H =
(
L2 (Ω)

)d , Q =
{
τ = (τij) : τij = τji ∈ L2 (Ω)

}
,

H1 =
(
H1 (Ω)

)d , Q1 = {τ ∈ Q : div τ ∈ H} .
H,Q are Hilbert spaces equipped with the respective inner products:

〈u, v〉H =
∫
Ω

uividx, 〈σ, τ〉Q =
∫
Ω

σijτijdx.

Let V be the closed subspace of H1 defined by

V = {v ∈ H1 : v = 0 on Γ1} ,
and the set of admissible displacements fields given by

K = {v ∈ V : vν ≤ g on Γ3} ,
where g ≥ 0. Since meas Γ1 > 0, the following Korn’s inequality holds [6],

‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V,(2.8)

where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V with the
inner product given by

(u, v)V = 〈ε (u) , ε (v)〉Q
and let ‖.‖V be the associated norm. It follows from (2.8) that the norms ‖.‖H1

and
‖.‖V are equivalent and (V, ‖.‖V ) is a real Hilbert space. Moreover, by the Sobolev
trace theorem, there exists a constant dΩ > 0 depending only on the domain Ω,
Γ1and Γ3 such that

‖v‖(L2(Γ3))d ≤ dΩ ‖v‖V ∀v ∈ V.(2.9)

For every v ∈ H1, we denote by vν and vτ the normal and the tangential components
of v on Γ given by

vν = v.ν, vτ = v − vνν,
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where ν is a unit outward normal vector to Γ. We also denote by σν and στ the
normal and tangential component of a function σ ∈ Q1 defined by σν = σν.ν,
στ = σ−σνν, and we recall that when σ is a regular function, the following Green’s
formula holds:

〈σ, ε (v)〉Q + 〈divσ, v〉H =
∫
Γ

σν.vda ∀v ∈ H1.

In the study of the mechanical problem P1, we assume that E = (Eijkh) : Ω×Sd → Sd

is a bounded symmetric positive definite fourth order tensor, i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. Eijkh ∈ L∞ (Γ3) , 1 ≤ i, j, k, h ≤ d.

. Eσ.τ = σ.Eτ , ∀σ, τ ∈ Sd, a.e. in Ω.

. There exists α > 0 such that

Eτ.τ ≥ α |τ |2 ∀τ ∈ Sd, a.e. in Ω.

(2.10)

We define the bilinear form a (., .) on V × V by

a (u, v) =
∫
Ω

Eε (u) .ε (v) dx.

It follows from (2.10) that a is continuous and coercive, that is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) there exists M > 0 such that

|a (u, v)| ≤M ‖u‖V ‖v‖V ∀u, v ∈ V,

(b) there exists m > 0 such that

a (v, v) ≥ m ‖v‖2
V ∀v ∈ V.

(2.11)

For every real Banach space (X , ‖.‖X) and T > 0 we use the notation C ([0, T ] ;X)
for the space of continuous functions from [0, T ] to X ; recall that C ([0, T ] ;X) is a
real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x (t)‖X .

For p ∈ [1,∞] we use the standard notation of Lp (0, T ;V ) . We also use the Sobolev
space W 1,∞ (0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T :V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ) ,

where a dot now represents the weak derivative with respect to the time variable.
The forces are assumed to satisfy

ϕ1 ∈ W 1,∞ (0, T ;H) , ϕ2 ∈W 1,∞
(

0, T ;
(
L2 (Γ2)

)d)
.(2.12)
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Let f : [0, T ] → V given by

(f (t) , v)V =
∫
Ω

ϕ1.vdx +
∫
Γ2

ϕ2.vda ∀ v ∈ V, t ∈ [0, T ] .

The assumption (2.12) implies that

f ∈W 1,∞ (0, T ;V ) .

We assume that the contact function p satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) p :] −∞, g] → R+;

(b) there exists Lp > 0 such that
|p (u) − p (v)| ≤ Lp |u− v| , for all u, v ≤ g;

(c) (p (u) − p (v)) (u− v) ≥ 0, for all u, v ≤ g;

(d) p (v) = 0 for all v ≤ 0.

(2.13)

Next, we define the functionals

jν : V × V → R, jτ : V × V → R,

by

jν (v, w) =
∫
Γ3

p (vν)wνda, jτ (v, w) =
∫
Γ3

μp (vν) |wτ | da,

and let j = jν + jτ . We suppose that the friction coefficient μ satisfies

μ ∈ L∞ (Γ3) and μ ≥ 0 a.e. on Γ3.(2.14)

Also we assume that the initial data u0 satisfies

u0 ∈ K, a (u0, v − u0) + j (u0, v − u0) ≥ (f (0) , v − u0)V ∀v ∈ K.(2.15)

In the sequel, everywhere below c will denote a positive constant which does not
depend on n ∈ N∗ and t ∈ [0, T ] and whose value may change from line to line.

Now, in order to establish the weak formulation of Problem P1, we assume that
u is a smooth function satisfying (2.1) − (2.7). Indeed, let v ∈ V and multiply the
equilibrium of forces (2.2) by v − u̇ (t), integrate the result over Ω and use Green’s
formula to obtain∫

Ω

σ (t) (ε (v) − ε (u̇ (t))) dx =
∫
Ω

ϕ1 (t) .(v − u̇ (t))dx +
∫
Γ

σ (t) ν. (v − u̇ (t)) da.

Taking into account of (2.4) and v = 0 on Γ1, we see that∫
Γ

σ (t) ν. (v − u̇ (t)) da =
∫
Γ2

ϕ2 (t) .(v − u̇ (t))da+
∫
Γ3

σ (t) ν. (v − u̇ (t)) da.
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Moreover we have∫
Γ3

σ (t) ν. (v − u̇ (t)) da =
∫
Γ3

σν (t) (vν − u̇ν (t)) da+
∫
Γ3

στ (t) (vτ − u̇τ (t)) da,

and ∫
Γ3

σν (t) (vν − u̇ν (t)) da =
∫
Γ3

(σν (t) + p (uν (t))) (vν − u̇ν (t)) da

−
∫
Γ3

p (uν (t)) (vν − u̇ν (t)) da.

The law of friction (2.6) leads to the following relation:

στ (vτ − u̇τ ) + μp (uν) (|vτ | − |u̇τ |) ≥ 0 ∀vτ ,

from which we deduce that the function u satisfies the inequality

a (u (t) , v − u̇ (t)) + j (u (t) , v) − j (u (t) , u̇ (t)) ≥ (f (t) , v − u̇ (t))V

+
∫
Γ3

(σν (t) + p (uν (t))) (vν − u̇ν (t)) da ∀v ∈ V.

On the other hand we have

∫
Γ3

(σν (u (t)) + p (uν (t)) (zν − uν (t))da =

∫
Γ3

(σν (u (t)) + p (uν (t)))((zν − g) − (uν (t) − g))da =

∫
Γ3

(σν (u (t)) + p (uν (t)))(zν − g)da−
∫
Γ3

(σν (u (t)) + p (uν (t)) (uν (t) − g)da.

Using the conditions (2.5) it follows that∫
Γ3

(σν (u (t)) + p (uν (t)) (zν − g)da ≥ 0 ∀z ∈ K,

and ∫
Γ3

(σν (u (t)) + p (uν (t)))(uν (t) − g)da = 0.

Hence from the preceding we deduce that∫
Γ3

(σν (u (t)) + p (uν (t)))(zν − uν (t)) ≥ 0 ∀z ∈ K.
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Next, 〈., .〉 shall denote the duality pairing onH
1
2 (Γ),H− 1

2 (Γ). We define the normal
stress σν as follows. Let u ∈ H1 such that divσ (u) = −φ where φ ∈ H. Then
σν (u) ∈ H− 1

2 (Γ) is given by⎧⎨
⎩

〈σν (u) , vν〉 = a (u, v) − (φ, v)H

∀v ∈ H1 such that vτ = 0 on Γ.
(2.16)

We shall use the notation 〈θσν , vν〉 = 〈σν , θvν〉, ∀θ ∈ C1
0

(
R

d
)
. As in [5] let us

introduce the function ψ ∈ C∞
0

(
R

d
)
, 0 ≤ ψ ≤ 1, such that ψ = 1 on Γ̄3 and 0 in a

neighbourhoud of an open subset Γ4 with supp(ϕ2 (t)) ⊂ Γ4 ⊂ Γ̄4 ⊂ Γ2 ∀t ∈ [0, T ] .
Finally, with these notations we obtain a variational formulation of the problem

P1 as follows.

Problem P2. Find a displacement field u ∈ W 1,∞ (0, T ;V ) such that u (0) = u0,
u (t) ∈ K, for all t ∈ [0, T ], and for almost all t ∈ (0, T ),

a (u (t) , v − u̇ (t)) + j (u (t) , v) − j (u (t) , u̇ (t)) ≥ (f (t) , v − u̇ (t))V

+ 〈σν (u (t)) + p (uν (t)) , ψ(vν − u̇ν (t))〉 ∀v ∈ V,

(2.17)

and

〈σν (u (t)) + p (uν (t)) , ψ(zν − uν (t))〉 ≥ 0 ∀z ∈ K.(2.18)

One has the following

Theorem 2.1. Let (2.11) , (2.12), (2.13), (2.14) and (2.15) hold. Then, there exists
a constant μ0 > 0 such that Problem P2 has at least one solution if

‖μ‖L∞(Γ3) < μ0.

Remark 2.2. It is interesting to note that as in [4] any element u such that u (t) ∈ K

for all t ∈ [0, T ] and satisfying inequality (2.18) verifies〈
σν (u (t)) + p (uν (t)) , ψ

uν (t+ Δt) − uν (t)
Δt

〉
≥ 0

and 〈
σν (u (t)) + p (uν (t)) , ψ

uν (t− Δt) − uν (t)
−Δt

〉
≤ 0

for all Δt > 0. Moreover using the assumption (2.13) on p, one obtains that when
Δt→ 0,

〈σν (u (t)) + p (uν (t)) , ψu̇ν (t)〉 = 0 a.e. t ∈ (0, T ) .(2.19)

3. Incremental formulation

For the proof of Theorem 2.1, we carry a time-discretization of Problem P2. We
need a partition of the time interval [0, T ] , with 0 = t0 < t1 < ... < tn = T , where
ti = iΔt, i = 0, ..., n, with step size Δt = T/n. We denote by ui the approximation
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of u at time ti and Δui = ui+1 − ui. For a function v ∈ C ([0, T ] ;X) where X is a
Banah space we use the notation vi = v (ti). By using an implicit scheme, we obtain
a sequence of incremental problems P i

n defined for u0 = u0 by

Problem P i
n. Find ui+1 ∈ K such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a
(
ui+1, w − ui+1

)
+ j

(
ui+1, w − ui

)− j
(
ui+1,Δui

)
≥ (f i+1, w − ui+1

)
V

+
〈
σν

(
ui+1

)
+ p

(
u

i+1

ν

)
, ψ(wν − ui+1

ν )
〉

∀ w ∈ V,

〈
σν

(
ui+1

)
+ p

(
u

i+1

ν

)
, ψ(wν − ui+1

ν )
〉
≥ 0 ∀ w ∈ K.

(3.20)

As in [5] Problem P i
n is equivalent to Problem Qi

n defined as follows.

Problem Qi
n. Find ui+1 ∈ K such that⎧⎨
⎩

a
(
ui+1, w − ui+1

)
+ j

(
ui+1, w − ui

)− j
(
ui+1,Δui

)
≥ (f i+1, w − ui+1

)
V

∀ w ∈ K.

(3.21)

We have the following result.

Proposition 3.1. There exists a constant μ0 > 0 such that Problem Qi
n has a

unique solution if

‖μ‖L∞(Γ3)
< μ0.

To prove this proposition, we introduce the following intermediate problem.

Problem Qi
nη. For η ∈ K, find ui+1

η ∈ K such that⎧⎨
⎩

(Aui+1
η , w − ui+1

η )V + jτ
(
η, w − ui

)− jτ
(
η, ui+1

η − ui
)

≥ (f i+1, w − ui+1
η

)
V

∀ w ∈ K,

(3.22)

where the operator A : V → V is defined as

(Au, v)V = a (u, v) + jν (u, v) .

We can prove the following

Lemma 3.2. Problem Qi
nη has a unique solution.

Proof. We use (2.11) (a), (2.11) (b), (2.13) (b) and (2.13) (c) to see that the operator
A is strongly monotone and Lipschitz continuous. The functional jη defined on K by
jη (w) = jτ

(
η, w − ui

)
is proper convex and lower semicontinuous. From the theory

of elliptic variational inequalities [3] , it follows that the inequality (3.3) has a unique
solution.
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Now to prove Proposition 3.1, we define the following mapping

S : K → K,

as

η → S (η) = uη.

The following lemma holds.

Lemma 3.3. S has a unique fixed point η∗ and uη∗ is a unique solution of Problem
Qi

n.

Proof. We set v = uηs in inequality of Problem Qi
nηr

and v = uηr in inequality
of Problem Qi

nηs
. After adding the resulting inequalities, we obtain by using the

hypthese (2.13) (c) on p that

a(uη1−uη2 , uη1 − uη2)

≤ jτ
(
η1, uη2 − ui

)− jτ
(
η1, uη1 − ui

)
+ jτ

(
η2, uη1 − ui

)− jτ
(
η2, uη2 − ui

)
.

By using (2.11) (b), (2.9) and (2.12) (b), we get

‖S (uη2) − S (uη1)‖V ≤ d2
Ω

m
Lp ‖μ‖L∞(Γ3) ‖η2 − η1‖V .

Let

μ0 =
m

d2
ΩLp

.

Then it follows that for ‖μ‖L∞(Γ3)
< μ0, S is a contraction; then it admits a unique

fixed point η∗ and uη∗ is a unique solution to Problem Qi
n.

4. Existence result

The main result of this section is to show the existence of a solution obtained as a
limit of the interpolate function of the discrete solution. For thus it is necessary at
first to establish the following

Lemma 4.1. For ‖μ‖L∞(Γ3)
< μ0, we have

∥∥ui+1
∥∥

V
≤ c

∥∥∥f i+1
∥∥∥

V
,
∥∥Δui

∥∥
V
≤ c

∥∥Δf i
∥∥

V
.(4.23)

Proof. Take w = 0 in inequality (3.2); then, using (2.11) (b) and (2.9), we obtain by
a standard reasoning the first inequality (4.1) for ‖μ‖L∞(Γ3) < μ0.

To prove the second inequality, set v = ui in inequality (3.2) and then v =
ui+1 in the translated inequality satisfied by ui. We find after adding the resulting
inequalities that
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−a (Δui,Δui
)

+ j
(
ui, ui+1 − ui−1

)− j
(
ui, ui − ui−1

)− j
(
ui+1,Δui

)
≥ (−Δf i,Δui)V .

On the other hand we have

j
(
ui, ui+1 − ui−1

)− j
(
ui, ui − ui−1

)− j
(
ui+1, ui+1 − ui

)
=∫

Γ3

(
p
(
ui

ν

)− p(ui+1
ν )

)
Δui

νda+
∫
Γ3

μp
(
ui

ν

) (∣∣ui+1
τ − ui−1

τ

∣∣− ∣∣ui−1
τ − ui

τ

∣∣) da

−
∫
Γ3

Δui
νda−

∫
Γ3

μp
(
ui+1

ν

) ∣∣Δui
τ

∣∣ da.
Moreover as∫

Γ3

(
p
(
ui

ν

)− p(ui+1
ν )

)
Δui

νda ≤ 0,
∣∣∣∣ui+1

τ − ui−1
τ

∣∣− ∣∣ui−1
τ − ui

τ

∣∣∣∣ ≤ ∣∣Δui
τ

∣∣ ,
we obtain

a
(
Δui,Δui

) ≤ ∫
Γ3

μ
∣∣p (ui+1

ν

)− p
(
ui

ν

)∣∣ ∣∣Δui
τ

∣∣ da+ (Δf i,Δui)V .

Then using (2.11) (b), (2.13) (b) and (2.9) , we get

m
∥∥Δui

∥∥2

V
≤ d2

ΩLp ‖μ‖L∞(Γ3)

∥∥Δui
∥∥2

V
+
∥∥Δf i

∥∥
V

∥∥Δui
∥∥

V
.

Therefore we obtain since

d2
ΩLp ‖μ‖L∞(Γ3) < m,

that ∥∥Δui
∥∥

V
≤ c

∥∥Δf i
∥∥

V
.

We shall now define the following sequence of functions:

un (t) = ui +
t− ti
Δt

Δui ∀t ∈ [ti, ti+1] , i = 0, ..., n− 1.

Then as in [7] we have the following

Lemma 4.2. There exists a function u, such that passing to a subsequence still
denoted (un) we have

un → u weak ∗ in W 1,∞ (0, T ;V ) .

On the other hand we introduce the following piecewise constant functions

ũn : [0, T ] → V, f̃n : [0, T ] → V ,

defined by

ũn (t) = ui+1, f̃n (t) = f (ti+1) , ∀ t ∈ (ti, ti+1], i = 0, ..., n− 1.
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As in [4] the following result holds.

Lemma 4.3. There exists a subsequence of (ũn) still denoted (ũn) such that the
following result on convergence holds.

(i) ũn → u weak ∗ in L∞ (0, T ;V ) ,

(ii) ũn (t) → u (t) weakly in V a.e. t ∈ [0, T ] ,

(iii) u (t) ∈ K for all t ∈ [0, T ] .

(4.24)

Now we have all the ingredients to prove Theorem 2.1. To this end, we shall prove
the following

Theorem 4.4. The weak limit u of ũn satisfies the following inequality: ∀z ∈
L2(0, T ;V )⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T∫
0

(
a (u (t) , z (t) − u̇ (t)) + j (u (t) , z (t)) − j

(
u (t) ,

.
u (t)

))
dt

≥
T∫

0

(
f (t) , z (t) − .

u (t)
)
V
dt+

T∫
0

〈σν (u (t)) + p (uν (t)) , ψzν (t)〉 dt
(4.25)

and satisfies the unilateral condition

∀t ∈ [0, T ] ∀z ∈ K 〈σν (u (t)) + p (uν (t)) , ψ(zν − uν (t))〉 ≥ 0.(4.26)

Proof. In inequality (3.1) set, for z ∈ V, w = ui + zΔt and divide by Δt, we obtain

a

(
ui+1, z − Δui

Δt

)
+ j

(
ui+1, z

)− j

(
ui+1,

Δui

Δt

)
≥
(
f i+1, z − Δui

Δt

)
V

+
〈
σν

(
ui+1

)
+ p

(
u

i+1

ν

)
, ψ

(
zν − Δui

ν

Δt

)〉
∀z ∈ V.

Since from the second inequality (3.1) we have〈
σν

(
ui+1

)
+ p

(
u

i+1

ν

)
, ψ(zν − Δui

ν

Δt
)
〉

≥
〈
σν

(
ui+1

)
+ p

(
u

i+1

ν

)
, ψzν

〉
,

then it follows that

a

(
ui+1, z − Δui

Δt

)
+ j

(
ui+1, z

)− j

(
ui+1,

Δui

Δt

)
≥

(
f i+1, z − Δui

Δt

)
V

+
〈
σν

(
ui+1

)
+ p

(
u

i+1

ν

)
, ψzν

〉
∀z ∈ V.
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This inequality implies that for any z ∈ L2 (0, T ;V ):

⎧⎪⎨
⎪⎩

a (ũn (t) , z (t) − u̇n (t)) + j (ũn (t) , z (t)) − j (ũn (t) , u̇n (t))

≥
(
f̃n (t) , z (t) − u̇n (t)

)
V

+ 〈σν (ũn (t)) + p (ũn
ν (t)) , ψzν〉 for a.a. t ∈ (0, T ) .

Integrating both sides of the previous inequality on (0, T ) we obtain the inequality

T∫
0

a (ũn (t) , z (t) − u̇n (t)) dt+

T∫
0

j (ũn (t) , z (t)) dt−
T∫

0

j (ũn (t) , u̇n (t)) dt

≥
T∫

0

(
f̃n (t) , z (t) − u̇n (t)

)
V
dt+

T∫
0

〈σν (ũn (t)) + p (ũn
ν (t)) , ψzν (t)〉 dt.

(4.27)

Now before passing to the limit in the previous inequality we start with the proof
of the following

Lemma 4.5. The following properties hold:

lim inf
n→∞

T∫
0

a (ũn (t) , un (t)) dt ≥
T∫

0

a (u (t) , u̇ (t)) dt,(4.28)

lim
n→∞

T∫
0

a (ũn (t) , z (t)) dt =

T∫
0

a (u (t) , z (t)) dt ∀z ∈ L2 (0, T ;V ) ,(4.29)

lim
n→∞

T∫
0

j (ũn (t) , z (t)) dt =

T∫
0

j (u (t) , z (t)) dt ∀z ∈ L2 (0, T ;V ) ,(4.30)

lim inf
n→∞

T∫
0

j (ũn (t) , u̇n (t)) dt ≥
T∫

0

j
(
u (t) ,

.
u (t)

)
dt,(4.31)

lim
n→∞

T∫
0

(
f̃n (t) , z (t) − u̇n (t)

)
V
dt =

T∫
0

(
f (t) , z (t) − .

u (t)
)
V
dt ∀z ∈ L2 (0, T ;V ) ,

(4.32)
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lim
n→∞

T∫
0

〈σν (ũn (t)) + p (ũn
ν (t)) , ψzν (t)〉 dt

=

T∫
0

〈σν (u (t)) + p (uν (t)) , ψzν (t)〉 dt ∀z ∈ L2 (0, T ;V ) .

(4.33)

Proof. To prove (4.6) and (4.7) it suffices to see [4]. To show (4.8) we write that for
t ∈ [0, T ]

j (ũn (t) , z (t)) = (j (ũn (t) , z (t)) − j (u (t) , z (t))) + j (u (t) , z (t)) .

Since

j (ũn (t) , z (t)) − j (u (t) , z (t)) =
∫
Γ3

(p (ũn
ν (t)) − p (uν (t))) zν (t) da

+
∫
Γ3

μ (p (ũn
ν (t)) − p (uν (t))) |zτ (t)| da,

by (2.14) (b) and (2.9), we get∣∣∣∣∣∣
T∫

0

(j (ũn (t) , z (t)) − j (u (t) , z (t))) dt

∣∣∣∣∣∣ ≤ c ‖ũn
ν − uν‖L2(0,T ;L2(Γ3)) ‖z‖L2(0,T ;V ) ,

so, since ũn
ν → uν strongly in L2

(
0, T ;L2 (Γ3)

)
, we get

lim
n→∞

T∫
0

(j (ũn (t) , z (t)) − j (u (t) , z (t))) dt = 0,

and then (4.8) follows. Now to prove (4.9) we notice that
T∫

0

j (ũn (t) , u̇n (t)) dt=

T∫
0

(j (ũn (t) , u̇n (t)) − j (u (t) , u̇n (t))) dt

+

T∫
0

j (u (t) , u̇n (t)) dt.

The previous equality implies∣∣∣∣∣∣
T∫

0

(j (ũn (t) , u̇n (t)) − j (u (t) , u̇n (t))) dt

∣∣∣∣∣∣
≤ c ‖ũn

ν − uν‖L2(0,T ;L2(Γ3))
‖u̇n‖L2(0,T :V ) .
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As u̇n is bounded in L2 (0, T ;V ), it follows that

lim
n→∞

T∫
0

(j (ũn (t) , u̇n (t)) − j (u (t) , u̇n (t))) dt = 0.

For the convergence of the other term, we set

p (uν (t)) = r (t) .

Keeping in mind the assumption (2.13) on the function p, it follows that

r ∈ C
(
[0, T ];L2(Γ3

)
) and r (t) ≥ 0 ∀ t ∈ [0, T ] .

Moreover let the function ϕr be defined by

ϕr (z) =
∫
Γ3

rzνda+
∫
Γ3

μr |zτ | da.

Then ϕr is lower semicontinuous and we have

lim inf
n→∞

T∫
0

ϕr (u̇n (t)) dt ≥
T∫

0

ϕr

( .
u (t)

)
dt,

and hence we deduce (4.9). To show (4.10), we use (4.2) (i) and that f̃n → f strongly
in L2 (0, T ;V ). Finally to prove (4.11) it suffices to use (2.16) , (2.14) (b) and (4.2) .

Now we use the inequality (3.2) to deduce that

a
(
ui+1, w − ui+1

)
+ j

(
ui+1, w − ui+1

) ≥ (f i+1, w − ui+1
)
V

∀ w ∈ K.

Hence we obtain for all t ∈]0, T ] the inequality

a (ũn (t) , w − ũn (t)) + j (ũn (t) , w − ũn (t)) ≥
(
f̃n (t) , w − ũn (t)

)
V

∀ w ∈ K.

Passing to the limit as n→ +∞ we obtain by using (4.2) (ii) and (2.15) that for all
t ∈ [0, T ] :

a (u (t) , w − u (t)) + j (u (t) , w − u (t)) ≥ (f (t) , w − u (t))V ∀ w ∈ K.

Using Green’s formula we obtain (4.4) and then (2.18).
We now use Lemma 4.5 and passe to the limit in (4.5) to obtain⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T∫
0

(
a (u (t) , z (t) − u̇ (t)) + j (u (t) , z (t)) − j

(
u (t) ,

.
u (t)

))
dt

≥
T∫

0

(
f (t) , z (t) − .

u (t)
)
V
dt+

T∫
0

〈σν (u (t)) + p (uν (t)) , ψzν (t)〉 dt.
(4.34)

Now keeping in mind (2.19), one arrives at the inequality (4.3) .
If we set in (4.12) z ∈ L2(0, T ;V ) defined by

z (s) =
{
v for s ∈ [t, t+ λ] ,
u̇ (s) elsewhere,
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we get

1
λ

t+λ∫
t

(
a (u (s) , v − u̇ (s)) + j (u (s) , v) − j

(
u (s) ,

.
u (s)

))
ds

≥ 1
λ

t+λ∫
t

(
f (s) , v − .

u (s)
)
V
ds+

1
λ

t+λ∫
t

〈σν (u (s)) + p (uν (s)) , ψ(vν − u̇ν (s))〉 ds

and passing to the limit we obtain the inequality (2.17).

5. Conclusion

For the problem in question we have proved the existence of a weak solution under
a smallness of the friction coefficient. As it is known, the question of uniqueness of
the solution remains still open.
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O ROZWIA̧ZALNOŚCI ZAGADNIENIA STYKU
QUASI-STATYCZNEGO DLA CIA�L SPRȨŻYSTYCH

S t r e s z c z e n i e
Rozważamy zagadnienie styku quasi-statycznego miȩdzy liniowym cia�lem sprȩżystym

a pod�lożem. Styk jest modelowany z uginaniem normalnym, tak że przenikanie jest ograni-
czone z wiȩzami jednostronnymi przy zachodzeniu odpowiedniego prawa Coulomba o tar-
ciu na sucho. Przy za�lożeniu ma�lości wspó�lczynnika tarcia, dowodzimy istnienia s�labego
rozwia̧zania zagadnienia. Dowód jest oparty na argumancie dyskretyzacji czasu, zawartości
i pó�lcia̧g�lości z do�lu.
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MELTING AND RELATED PHENOMENA IN THIN LEAD FILMS

Summary
The calculations of melting properties for thin lead films are presented. It was found that

the film melting temperature, Tm, is less than the bulk melting temperature T b
m = 600.7 K

and it decreases with the decrease of film thickness d. For film thickness d > 26 Å the film
melting is proceeded by the surface melting. The surface melting appears at Tsm = 417.7 K.
The Tsm for d > 30 Å is constant and it achieves the value Tsm = 420 K, the same as in
the case of the bulk surface melting temperature. The quasi-liquid layer thickness increases
with the temperature and the law of increasing is the same as observed for the bulk lead
sample.

1. Introduction

Melting properties of lead films with thickness d = 50 Å and d = 100 Å were consid-
ered in the previous paper [1]. It was then found that:

i) The film melting temperature Tm is lower than the bulk melting temperature
T b

m = 600.7 K and it depends on the film thickness. For d = 50 Å and d = 100 Å this
temperatures are Tm = 512 K and Tm = 560.5 K, respectively.

ii) The film surface melting temperature Tsm = 420 K, and it is independent of
the film thickness. Its value is the same as Tsm for the bulk material.

iii) The quasi-liquid layer which appears on the film surfaces at Tsm increases
with the increasing of the film temperature. Its growth does not depend on the film
thickness and the law of growth is similar to that of the bulk material.

The present contribution is a continuation and extension of the work [1]. The
melting properties of lead films for thickness up to 150 Å are calculated. The con-
siderations made in the case of thin films (d < 30 Å) showed however new features
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of the melting process. The physical model and methodological approach are the
same as in the paper [1]. The main results were presented on the Professor Leszek
Wojtczak Colloquium [2].

2. Theoretical background

The film of thickness d is situated in the (x, y) – plane in which the melting properties
are homogeneous. Across the film thickness, in the direction z perpendicular to the
film surface, the order parameter exhibits its profile m = m(z).

In order to describe the film melting properties the classical Landau-Ginzburg
type functional is used in the following form [e.g. 3]:

F (m(z)) = fs(ms) +

d∫
0

[
f(m) +

1
2
I

(
dm

dz

)2
]
.(1)

The surface free energy term fs(ms) in the formula (1) is given by

fs(ms) = fs(m0,md) =
1
2
α1m

2
0 +

1
2
α2m

2
d,(2)

where for the sake of simplicity it is assumed that

α1 = α2 = αs and m0 = md = ms(3)

with αs = const., whereas m0 and md are the order parameters at the surfaces.
The bulk Gibbs free energy f(m) in the formula (1) has the form proposed by

L. Wojtczak [1]:

f(m) = 6α
[

1
4
m4 − 1

3
(1 +m∗)m3 +

1
2
m∗m2

]
+ Λ,(4)

where

m∗ =
1
2
− Λ
α
, Λ = Lm

(
1 − T

T b
m

)
(5)

with α = const., whereas T b
m and Lm are the bulk melting temperature and the

latent heat of bulk melting, respectively.
The Gibbs free energy for the bulk material given in the formula (4) has two

minima at m = 0 and m = 1 which correspond to the liquid and crystalline phases,
respectively. The maximum at m = m∗ makes a border between the phases. There-
fore we have

(6a) 0 < m ≤ m∗ for quasi-liquid and

(6b) m∗ ≤ m < 1 for quasi-solid.

The liquid bulk Gibbs free energy f(m = 0) depends on temperature T . It de-
creases from a positive to negative values with increase of temperature and vanishes
at T = T b

m. The solid bulk Gibbs free energy f(m = 1) = 0 at any temperature. In
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this way the function f(m) describes properly the bulk melting transition [cf. 1]. It
is worthwhile to notice that m∗ increases with increasing temperature T .

We can see that in the present model the two phases are described by only one
function (4) instead of two different functions usually applied; when each phase is
described by its own function.

The second term under the integral in the formula (1), proportional to the ma-
terial constant I, refers to the gradient contribution due to Landau-Ginzburg type
of the thermodynamic potential.

In the case of Pb the constants appearing in formulas (1), (2), (4), and (5)
have their values αs = 0.5208 J/m2, α = 3.9365 · 108 J/m3, Lm = 2.47 · 108 J/m3,
T b

m = 600.7 K and I = 1.5624 · 10−10 J/m ([4], [5]).
The properties of melting are obtained by minimization of the functional (1) with

respect to the order parameter m. The procedure is done by the Finite Elements
Method (cf. [1], [6] and [7]). The solutions lead to the order parameter profile m(z)
for its given film thickness d and temperature T . Two physical solutions are found
for films thick enough, d > 16 Å and temperature T > 0.203Tm: i) m(z) = 0 for
liquid and ii) m(z) �= 0 for solid phase. Under the condition (3) the solutions are
symmetric and have the feature m(z) = m(d − z). The order parameter m has the
lowest values on the film surfaces. Deeper in the sample the values of m are greater
but never exceed one. With increasing temperature the order parameter m decreases.
The decreasing of m is more remarkable close to the film surface than in the middle
of the sample (see [1] as well as the Fig. 2, and Fig. 3 below).

The film melting temperature Tm is obtained by the solution of the equation

F (m(z = 0), Tm) = F (m(z), Tm) .(7)

As it was mentioned above, when the temperature is growing up, the order pa-
rameter at surface ms decreases. Simultaneously, the potential barrier value m∗ in-
creases. These two factors cause the equality of the ms and m∗ at some temperature
T = Tsm:

ms(Tsm) = m∗(Tsm).(8)

The solution of Eq. (8) gives the surface melting temperature Tsm, it means the
temperature in which the quasi-liquid layer appears on the film surface.

At temperature T > Tsm the equality of m(z) and m∗ takes place inside the
sample at a point z = z∗. In this case the distance from the surface to the intersec-
tion point can be interpreted as the quasi-liquid layer thickness z∗ which for given
temperature can be found from the following condition:

m(z∗) = m∗.(9)

3. Results

The thickness dependence of the film melting Tm and film surface melting Tsm tem-
peratures are presented in Fig. 1. We can see that the film melting temperature Tm
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is less than the Pb bulk melting temperature T b
m = 600.7 K and it decreases with

decreasing film thickness d. The melting is observed for foil thickness d ≥ 16 Å. It
appears at Tm = 279 K. The surface melting occurs for d > 26 Å at the temperature
Tsm = 417.7 K. The Tsm for d > 30 Å does not depend on the film thickness and it
has value Tsm = 420 K, which is the same as the bulk surface melting temperature.

The order parameter profiles m(z) for different film thickness d at their surface
melting temperatures Tsm = 420 K and their melting temperatures Tm are shown
in Fig. 2 and Fig. 3, respectively. The order parameter m of the liquid phase equals
zero, independently of the temperature and the film thickness. It is not drawn in
Fig. 2 and Fig. 3. We can see that for films thick enough the m(z) exhibits plateau
(with m ≈ 1) in the middle of sample. For thinner films the plateau transforms into
a maximum with m < 1.

The quasi-layer thickness growth is one of the important characteristics of the
surface melting. Its temperature behaviour depends on a type of interaction. In the
case of bulk Pb the short-range interaction forces lead to the logarithmic law of
the growth with temperature. This law was confirmed for film thickness 50 Å and
100 Å in [1]. In Fig. 4a we can see z∗ as a function of T while the relation z∗ as a
function of ln(T b

m/(T
b
m − T )) is presented in Fig. 4b. The data in Fig. 4 are collected

for different film thickness. We can see that the law of layer growth does not depend
on film thickness. The linear dependence of the quasi-liquid layer thickness in the
inverse logarithmic temperature-difference scale (Fig. 4b) confirms the occurrence of
short-range interaction forces in the Pb thin films.
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Fig. 1: The thickness dependence of the film melting Tm and surface melting Tsm temper-
atures.
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Fig. 2: The order parameter profiles m(z) for different film thickness d at their surface
melting temperatures Tsm = 420 K.
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Fig. 3: The order parameter profiles m(z) for different film thickness d at their melting
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Fig. 4: The quasi-liquid layer thickness z∗ as a function of temperature T , (Fig. 4a) and as
a function of ln(T − mb/(T b

m − T )), (Fig. 4b).

4. Conclusions

The calculations of the thin lead films melting properties confirmed the results ob-
tained in the paper [1] and specified above in the Introduction. In addition it was
found that the melting appears for films of thickness d = 16 Å at Tm = 279 K. For
the samples of thickness d ≤ 26 Å the film melting is the first order phase transi-
tion whereas for d > 26 Å the film melting is proceeded by the surface melting –
the second order phase transition. The surface melting appears at the temperature
Tsm = 417.7 K.

With increasing the film thickness the Tsm increases and for d > 30 Å it attains
the value Tsm = 420 K typical for the bulk material. The quasi-liquid layer thickness
z∗ grows with increasing temperature T . For a chosen T < Tm(d) the z∗ does not
depend on the film thickness d. The law of the quasi-liquid layer thickness growth
with the film temperature confirms the existence of short-range interactions in the
thin lead films.

The applied form of the f(m) (the formula (4)) describes the melting process of
Pb for the temperature greater than some critical one Tc = 0.203T b

m. For T < Tc

the maximum of f(m) appears at m∗ < 0 which corresponds to the existence of the
solid phase only. It is the reason that the solutions of Eq. (1) are limited to the film
thickness d < 16 Å. In spite of this, the mechanisms of the melting process presented
above are still valid at least qualitatively.
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TOPNIENIE I ZJAWISKA TOWARZYSZA̧CE
W CIENKICH P�LYTKACH O�LOWIU

S t r e s z c z e n i e
Przedstawione sa̧ wyliczenia w�lasności topnienia cienkich p�lytek o�lowiu. Pokazano, że

temperatura topnienia p�lytki, Tm jest mniejsza od temperatury topnienia materia�lu masy-
wnego T b

m = 600.7 K i rośnie wraz z grubościa̧ p�lytki d. Dla folii o grubościach d > 26 Å top-
nienie p�lytki jest poprzedzone topnieniem powierzchniowym. Zjawisko topnienia powierzch-
niowego pojawia siȩ w temperaturze Tsm = 417.7 K. Temperatura Tsm dla d > 30 Å jest sta�la
i równa temperaturze topnienia powierzchniowego materia�lu masywnego, Tsm = 420 K.
Grubość warstwy kwasi-cieczy wystȩpuja̧cej na powierzchni p�lytki rośnie wraz ze wzrostem
temperatury i wzrost ten jest taki sam jak w przypadku masywnej próbki o�lowiu.
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INFLUENCE OF PROFESSOR JULIAN �LAWRYNOWICZ AND HIS
�LÓDŹ AND LUBLIN COLLEAGUES DURING 20 YEARS OF POLISH-
MEXICAN COLLABORATION IN GENERALIZED COMPLEX
ANALYSIS AND ITS APPLICATIONS

Summary

This presentation of common results obtained within Mexican-Polish Collaboration

Agreement is going to express the reality and very truth character of this particular sci-

entific activitity initiated by Professors Julian �Lawrynowicz, José Adem, Enrique Ramı́rez

de Arellano, Luis Manuel Tovar Sánchez, and Fray de Landa Castillo Alvarado.

1. Introduction

In summer 1989 two scientific agreements between Poland and Mexico were assigned
in Poland. One of these agreements was established between Institute of Mathematics
the Polish Academy of Sciences and Instituto Politecnico Nacional in Mexico City.
The other one was assigned in �Lódź between the University of �Lódź and the Instituto
Politecnico Nacional in Mexico City. These pair of scientific agreements appears to
be very successful. Scientists participating in these two programs published more
than 60 papers and developed real collaboration between different groups of Polish
and Mexican researchers in physics, mathematics and biology. These facts show
how effective and fruitfull has been this collaboration. The man who really initiated
this activity was Professor Julian �Lawrynowicz. Further on, in this collaboration
we can see Professor Leszek Wojtczak, who assigned the second agreement as the
Rector of the University of �Lódź and paid a lot of care and attention to this activity,
and Professors Jakub Rembieliński, Anna Urbaniak-Kucharczyk and Ilona Zasada.
The 70th years anniversary of Professor Julian �Lawrynowicz and 20 years of this
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unusual cooperation is the best occasion to celebrate also a real friendship between
Polish and Mexican people and institutions. Each year, two real leaders of this
cooperation, namely Professor Julian �Lawrynowicz and Professor Luis Manuel Tovar
organized meetings, conferences and scientific workshops. In 1989 the first author of
this presentation went to Mexico for the first time within this program and initiated
very fruitful collaboration with Professor Lino Feliciano Reséndis Ocampo. Later
the scientific programme was joined by other Lublin colleagues: Dariusz Partyla,
Katarzyna Wilczek, Bogdan Paprocki, Agnieszka Wieczorek, and the second author
of this presentation. Fascinating exotic country and very friendly Mexican people
have been completing this collaboration. Most of our Mexican friends with their
positive attitude to our scientific program makes us sure that this activity will have
real future.

2. Scientific publications prepared by Julian �Lawrynowicz
and Mexican scientists

I. Variational problems for quasiconformal mappings

1. J. �Lawrynowicz, E. Ramı́rez de Arellano, Anti-involutions, symmetric
complex manifolds, and quantum spaces, in: Complex Analysis and Geom-
etry. Ed. by V. Ancona, E. Ballico, and A. Silva (Lecture Notes in Pure
and Applied Mathematics 173), Marcel Dekker Inc., New York-Basel-
Hong Kong 1995, pp. 309–317.

II. Conformal and biholomorphic invariants
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de Estudios Avanzados México Preprint no. 26 (1989), 53 pp., (b) Bull.
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1. J. Avendaño López, F. L. Castillo Alvarado, J. �Lawrynowicz, R. A. Barrio,
A. Urbaniak-Kucharczyk, Clifford analysis, Riemannian geometry, and
electromagnetic field, (a) Dep. de Mat. Centro de Investigación y de Estu-
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Summary
For monogenic functions taking values in a three-dimensional commutative harmonic

algebra with the unit and two-dimensional radical, we have proved analogs of classical
integral theorems of the theory of analytic functions of the complex variable: the Cauchy
integral theorems for surface integral and curvilinear integral, the Morera theorem and the
Cauchy integral formula.

1. Introduction

Let A3 be a three-dimensional commutative associative Banach algebra with the
unit 1 over the field of complex numbers C. Let {1, ρ1, ρ2} be a basis of the algebra
A3 with the multiplication table ρ1ρ2 = ρ2

2 = 0, ρ2
1 = ρ2.

The algebra A3 is harmonic (see [1,2]) because there exist harmonic bases {e1 =
1, e2, e3} in A3 satisfying the following condition

e21 + e22 + e23 = 0.(1)

Consider the linear envelope E3 := {ζ = x + ye2 + ze3 : x, y, z ∈ R} generated
by the vectors 1, e2, e3 over the field of real numbers R. For a set S ⊂ R

3 consider
the set Sζ := {ζ = x + ye2 + ze3 : (x, y, z) ∈ S} ⊂ E3 congruent to S. In what
follows, ζ = x+ ye2 + ze3 and x, y, z ∈ R.

A continuous function Φ : Ωζ → A3 is monogenic in a domain Ωζ ⊂ E3 if Φ is
differentiable in the sense of Gateaux in every point of Ωζ , i. e. if for every ζ ∈ Ωζ

there exists an element Φ′(ζ) ∈ A3 such that

lim
ε→0+0

(Φ(ζ + εh) − Φ(ζ)) ε−1 = hΦ′(ζ) ∀h ∈ E3.
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It follows from the equality (1) and the equality

�3Φ :=
∂2Φ
∂x2

+
∂2Φ
∂y2

+
∂2Φ
∂z2

= Φ′′(ζ)(e21 + e22 + e23)

that every twice monogenic function Φ : Ωζ → A3 satisfies the three-dimensional
Laplace equation Δ3Φ = 0.

In the paper [3] for functions differentiable in the sense of Lorch in an arbitrary
convex domain of commutative associative Banach algebra, some properties similar
to properties of holomorphic functions of complex variable (in particular, the integral
Cauchy theorem and the integral Cauchy formula, the Taylor expansion and the
Morera theorem) are established. In the paper [4] the convexity of the domain is
withdrawn in the mentioned results from [3].

In this paper we establish similar results for monogenic functions Φ : Ωζ → A3

given only in a domain Ωζ of the linear envelope E3 instead of domain of the whole
algebra A3. Let us note that a priori the differentiability of the function Φ in the
sense of Gâteaux is a restriction weaker than the differentiability of this function in
the sense of Lorch. Moreover, note that the integral Cauchy formula established in
the papers [3, 4] is not applicable for a monogenic function Φ : Ωζ → A3 because
it deals with an integration along a curve on which the function Φ is not given,
generally speaking.

Note that as well as in [3,4], some hypercomplex analogues of the integral Cauchy
theorem for a curvilinear integral are established in the papers [5, 6]. In the papers
[5, 7–9] similar theorems are established for surface integral.

2. Cauchy integral theorem for a surface integral

A function Φ(ζ) of the variable ζ ∈ Ωζ is monogenic if and only if the following
Cauchy-Riemann conditions are satisfied (see Theorem 1.3 [2]):

∂Φ
∂y

=
∂Φ
∂x

e2,
∂Φ
∂z

=
∂Φ
∂x

e3.(2)

Along with monogenic functions, consider a function Ψ : Ωζ → A3 having contin-
uous partial derivatives of the first order in a domain Ωζ and satisfying the equation

∂Ψ
∂x

+
∂Ψ
∂y

e2 +
∂Ψ
∂z

e3 = 0(3)

at every point of this domain.
In the scientific literature the different denominations are used for functions sat-

isfying equations of the form (3). For example, in [5, 6, 10] – regular functions, and
in the papers [7, 8, 11] they are called monogenic functions. As well as in the pa-
pers [9, 12, 13], we call a function hyperholomorphic if it satisfies the equation (3).

It is well known that in the quaternionic analysis the classes of functions deter-
mined by means conditions of the form (2) and (3) do not coincide (see [5, 14]).
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Note that in the algebra A3 the set of monogenic functions is a subset of the set of
hyperholomorphic functions because every monogenic function Φ : Ωζ → A3 satisfies
the equality (3) owing to the conditions (1), (2). Yet, there exist hyperholomorphic
functions which are not monogenic. For example, the function

Ψ(x+ ye2 + ze3) = ze2 − ye3

satisfies the condition (3), but it does not satisfy the equalities of the form (2).
Let Ω be a bounded closed set in R

3. For a continuous function Ψ : Ωζ → A3 of
the form

Ψ(x+ ye2 + ze3) =
3∑

k=1

Uk(x, y, z)ek + i
3∑

k=1

Vk(x, y, z)ek,(4)

where (x, y, z) ∈ Ω, we define a volume integral by the equality∫
Ωζ

Ψ(ζ)dxdydz :=
3∑

k=1

ek

∫
Ω

Uk(x, y, z)dxdydz + i

3∑
k=1

ek

∫
Ω

Vk(x, y, z)dxdydz.

Let Σ be a quadrable surface in R
3 with quadrable projections on the coordinate

planes. For a continuous function Ψ : Σζ → A3 of the form (4), where (x, y, z) ∈ Σ,
we define a surface integral on Σζ with the differential form

σα1,α2,α3 := α1dydz + α2dzdxe2 + α3dxdye3, where α1, α2, α3 ∈ R,

by the equality∫
Σζ

Ψ(ζ)σα1,α2,α3 :=
3∑

k=1

ek

∫
Σ

α1Uk(x, y, z)dydz +
3∑

k=1

e2ek

∫
Σ

α2Uk(x, y, z)dzdx

+
3∑

k=1

e3ek

∫
Σ

α3Uk(x, y, z)dxdy + i

3∑
k=1

ek

∫
Σ

α1Vk(x, y, z)dydz

+i
3∑

k=1

e2ek

∫
Σ

α2Vk(x, y, z)dzdx+ i
3∑

k=1

e3ek

∫
Σ

α3Vk(x, y, z)dxdy.

A connected homeomorphic image of a square in R
3 is called simple surface. A

surface is locally-simple if it is simple in a certain neighbourhood of every point.
If a simply connected domain Ω ⊂ R

3 has a closed locally-simple piecewise-
smooth boundary ∂Ω and a function Ψ : Ωζ → A3 is continuous together with
partial derivatives of the first order up to the boundary ∂Ωζ , then the following
analogue of the Gauss-Ostrogradski formula is true:∫

∂Ωζ

Ψ(ζ)σ =
∫
Ωζ

(
∂Ψ
∂x

+
∂Ψ
∂y

e2 +
∂Ψ
∂z

e3

)
dxdydz,(5)

where σ := σ1,1,1 ≡ dydz + dzdxe2 + dxdye3. Now, the next theorem is a result of
the formula (5) and the equality (3).
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Theorem 1. Suppose that Ω is a simply connected domain with a closed locally-
simple piecewise-smooth boundary ∂Ω. Suppose also that the function Ψ : Ωζ → A3

is continuous in the closure Ωζ of the domain Ωζ and hyperholomorphic in Ωζ . Then∫
∂Ωζ

Ψ(ζ)σ = 0.

3. Cauchy integral theorem for a curvilinear integral

Let γ be a Jordan rectifiable curve in R
3. For a continuous function Ψ : γζ → A3

of the form (4), where (x, y, z) ∈ γ, we define an integral along the curve γζ by the
equality ∫

γζ

Ψ(ζ)dζ :=
3∑

k=1

ek

∫
γ

Uk(x, y, z)dx+
3∑

k=1

e2ek

∫
γ

Uk(x, y, z)dy

+
3∑

k=1

e3ek

∫
γ

Uk(x, y, z)dz + i

3∑
k=1

ek

∫
γ

Vk(x, y, z)dx

+i
3∑

k=1

e2ek

∫
γ

Vk(x, y, z)dy + i

3∑
k=1

e3ek

∫
γ

Vk(x, y, z)dz,

where
dζ := dx+ e2dy + e3dz.

If a function Φ : Ωζ → A3 is continuous together with partial derivatives of the
first order in a domain Ωζ , Σ is a piecewise-smooth surface in Ω, and the edge γ of
the surface Σ is a rectifiable Jordan curve, then the following analogue of the Stokes
formula is true:∫

γζ

Φ(ζ)dζ =
∫
Σζ

(
∂Φ
∂x

e2 − ∂Φ
∂y

)
dxdy +

(
∂Φ
∂y

e3 − ∂Φ
∂z

e2

)
dydz

+
(
∂Φ
∂z

− ∂Φ
∂x

e3

)
dzdx.(6)

Now, the next theorem is a result of the formula (6) and the equalities (2).

Theorem 2. Suppose that Φ : Ωζ → A3 is a monogenic function in a domain Ωζ ,
Σ is a piecewise-smooth surface in Ω, and the edge γ of the surface Σ is a rectifiable
Jordan curve. Then ∫

γζ

Φ(ζ)dζ = 0.(7)

Now, similarly to the proof of Theorem 3.2 [4] we can prove the following
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Theorem 3. Let Φ : Ωζ → A3 be a monogenic function in a domain Ωζ . Then for
every closed Jordan rectifiable curve γ homotopic to a point in Ω, the equality (7)
holds.

For functions taking values in the algebra A3, the following Morera theorem can
be established in the usual way.

Theorem 4. If a function Φ : Ωζ → A3 is continuous in a domain Ωζ and satisfies
the equality ∫

∂�ζ

Φ(ζ)dζ = 0(8)

for every triangle �ζ such that �ζ ⊂ Ωζ , then the function Φ is monogenic in the
domain Ωζ .

4. Cauchy integral formula

In what follows, we consider a harmonic basis {e1, e2, e3} with the following decom-
position with respect to the basis {1, ρ1, ρ2}:

e1 = 1, e2 = i+
1
2
iρ2, e3 = −ρ1 −

√
3

2
iρ2.

It follows from Lemma 1.1 [2] that

ζ−1 =
1

x+ iy
+

z

(x+ iy)2
ρ1 +

(
i

2

√
3z − y

(x + iy)2
+

z2

(x+ iy)3

)
ρ2(9)

for all ζ = x + ye2 + ze3 ∈ E3 \ {ze3 : z ∈ R}. Thus, it is obvious that the straight
line {ze3 : z ∈ R} is contained in the radical of the algebra A3.

Using the equality (9), it is easy to calculate that∫
γ̃ζ

τ−1dτ = 2πi,(10)

where γ̃ζ := {τ = x+ ye2 : x2 + y2 = R2}.

Theorem 5. Let Ω be a domain convex in the direction of the axis Oz and Φ : Ωζ →
A3 be a monogenic function in the domain Ωζ . Then for every point ζ0 ∈ Ωζ the
following equality is true:

Φ(ζ0) =
1

2πi

∫
γζ

Φ(ζ) (ζ − ζ0)−1
dζ,(11)

where γζ is an arbitrary closed Jordan rectifiable curve in Ωζ , which surrounds once
the straight line {ζ0 + ze3 : z ∈ R}.
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Proof. We represent the integral on the right-hand side of the equality (11) as the
sum of the following two integrals:∫

γζ

Φ(ζ) (ζ − ζ0)−1 dζ =
∫
γζ

(Φ(ζ) − Φ(ζ0)) (ζ − ζ0)−1 dζ+

+Φ(ζ0)
∫
γζ

(ζ − ζ0)−1 dζ =: I1 + I2.

Inasmuch as the domain Ω is convex in the direction of the axis Oz and the curve
γζ surrounds once the straight line {ζ0 + ze3 : z ∈ R}, γ is homotopic to the circle

K(R) := {(x− x0)2 + (y − y0)2 = R2, z = z0}, where ζ0 = x0 + y0e2 + z0e3.

Then using the equality (10), for τ = ζ − ζ0, we have I2 = 2πiΦ(ζ0).
Let us prove that I1 = 0. First, we choose on the curve γ two points A and

B in which there are tangents to γ, and we choose also two points A1, B1 on the
circle K(ε) which is completely contained in the domain Ω. Let γ1, γ2 be connected
components of the set γ \ {A,B}. By K1 and K2 we denote connected components
of the set K(ε) \ {A1, B1} in such a way that after a choice of smooth arcs Γ1, Γ2

each of the closed curves γ1 ∪Γ2 ∪K1 ∪Γ1 and γ2 ∪Γ1 ∪K2 ∪Γ2 will be homotopic
to a point of the domain Ω \ {(x0, y0, z) : z ∈ R}.

Then it follows from Theorem 3 that∫
γ1

ζ∪Γ2
ζ∪K1

ζ∪Γ1
ζ

(Φ(ζ) − Φ(ζ0)) (ζ − ζ0)−1
dζ = 0,(12)

∫
γ2

ζ∪Γ1
ζ∪K2

ζ∪Γ2
ζ

(Φ(ζ) − Φ(ζ0)) (ζ − ζ0)−1
dζ = 0.(13)

Inasmuch as each of the curves Γ1
ζ , Γ2

ζ has different orientations in the equalities
(12), (13), after addition of the mentioned equalities we obtain∫

γζ

(Φ(ζ) − Φ(ζ0)) (ζ − ζ0)−1
dζ =

∫
Kζ(ε)

(Φ(ζ) − Φ(ζ0)) (ζ − ζ0)−1
dζ,(14)

where the curves Kζ(ε) and γζ have the same orientation.
The integrand in the right-hand side of the equality (14) is bounded by a constant

which does not depend on ε. Therefore, passing to the limit in the equality (14) as
ε→ 0, we obtain I1 = 0 and the theorem is proved.

Using the formula (11), we obtain the Taylor expansion of monogenic function
in the usual way. Thus, as in the complex plane, one can give different equivalent
definitions of a monogenic function Φ : Ωζ → A3, i. e. the following theorem is true:

Theorem 6. Let Ω be a domain convex in the direction of the axis Oz. Then a
function Φ : Ωζ → A3 is monogenic in the domain Ωζ if and only if one of the
following conditions is satisfied:
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(I) the components Uk : Ω → C, k = 1, 3, of the decomposition

Φ(ζ) =
3∑

k=1

Uk(x, y, z) ek ,

of the function Φ are differentiable with respect to the variables x, y, z in Ω and the
conditions (2) are satisfied in the domain Ωζ ;

(II) the function Φ is continuous in Ωζ and satisfies the equality (8) for every
triangle �ζ such that �ζ ⊂ Ωζ ;

(III) for every ζ0 ∈ Ωζ there exists a neighbourhood in which the function Φ is
expressed as the sum of the power series

Φ(ζ) =
∞∑

k=0

ck (ζ − ζ0)k, ck ∈ A3.

References

[1] I. P. Mel’nichenko, Algebras of functionally-invariant solutions of the three-
dimensional Laplace equation, Ukr. Math. J. 55, no. 9 (2003), 1551–1557.

[2] I. P. Mel’nichenko and S. A. Plaksa, Commutative algebras and spatial potential fields,
Kiev: Inst. Math. NAS Ukraine, 2008 [in Russian].

[3] E. R. Lorch, The theory of analytic function in normed abelian vector rings, Trans.
Amer. Math. Soc. 54 (1943), 414–425.

[4] E. K. Blum, A theory of analytic functions in Banach algebras, Trans. Amer. Math.
Soc. 78 (1955), 343–370.

[5] A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc. 85 (1979), 199–225.

[6] F. Colombo, I. Sabadini, and D. Struppa, Slice monogenic functions, arXiv:0708.
3595v2 [math.CV] 25 Jan 2008.

[7] F. Brackx and R. Delanghe, Duality in hypercomplex functions theory, J. Funct. Anal.
37, no. 2 (1980), 164–181.

[8] S. Bernstein, Factorization of the nonlinear Schrödinger equation and applications,
Complex Variables and Elliptic Equations 51, no. 5–6 (2006), 429–452.

[9] V. V. Kravchenko and M. V. Shapiro, Integral representations for spatial models
of mathematical physics, Pitman Research Notes in Mathematics, Addison Wesley
Longman Inc., 1996.
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TWIERDZENIA CA�LKOWE I WZÓR CAUCHY’EGO
W PRZEMIENNEJ TRÓJWYMIAROWEJ ALGEBRZE
HARMONICZNEJ

S t r e s z c z e n i e
Dla funkcji jednoznacznie odwracalnych o wartościach w trójwymiarowej przemiennej

algebrze harmonicznej z jedynka̧ i dwuwymiarowym pierwiastkiem, dowodzimy odpowied-
ników klasycznych twierdzeń ca�lkowych teorii funkcji analitycznych jednej zmiennej ze-
spolonej: twierdzeń ca�lkowych Cauchy’ego dla ca�lki powierzchniowej i krzywoliniowej twier-
dzenia Morery i wzoru ca�lkowego Cauchy’ego.
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THE DIMENSIONS OF SECTIONS OF SOLUTION SETS
FOR SOME QUADRATIC QUATERNIONIC EQUATIONS

Summary
We study the sets of the solutions of quadratic quaternionic equations of two certain

kinds by the method of sections by hyperplanes perpendicular to the real axis. Namely,
we study the question about possible dimensions of such sections. For the both considered
kinds of equations we obtain that any considered section cannot be three-dimensional and
it can be two-dimensional only in some special cases. In particular, for any quaternionic
equation of the form

ax2 + x2b + xcx +
m∑

�=1

p(�)xq(�) + s = 0

with c �∈ R such section can be two-dimensional only if it contains a plane.

1. Introduction

Investigations of solutions of polynomial quaternionic equations (or, by other words,
zeros of quaternionic polynomials) with one unknown were performed in many works
during 20th and 21st century, for example [1–11].

It is already well-known that, in contrast to real and complex polynomial equa-
tions (with one unknown), it occurs often that a quaternionic one has infinitely many
solutions. In particular, the set of the solutions or a part of this set may constitute
a sphere, a circle, an unbounded linear manifold, etc. In this paper we will study a
question about possible dimensions of these sets for some certain types of equations.
More exactly, we will consider dimensions of so-called “real-fixing sections” of sets
of solutions (the corresponding definition is in Section 2).

In our investigations we will use the method of passing from a quaternionic
equation with one unknown to the corresponding system of four real equations with
four unknowns. For this aim one has to rewrite the unknown x ∈ H as x0 + x1i+
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x2j + x3k (where x0, x1, x2, x3 ∈ R) and analogously every coefficient, to commit
multiplications and to get an equation with real functions f0, f1, f2, f3:

f0(x0, x1, x2, x3) + f1(x0, x1, x2, x3)i

+f2(x0, x1, x2, x3)j + f3(x0, x1, x2, x3)k = 0.

This equation is equivalent to the following system of four real equations:⎧⎪⎪⎨
⎪⎪⎩

f0(x0, x1, x2, x3) = 0,
f1(x0, x1, x2, x3) = 0,
f2(x0, x1, x2, x3) = 0,
f3(x0, x1, x2, x3) = 0.

This method may be named very direct, simple as an idea, and often difficult in
applying. Yet, it seems to be almost impossible to avoid this method in the present-
day investigations of polynomial quaternionic equations. We have already used it
successfully in [3–6].

2. Preliminaries

We use H as the standard notation for the set of all (real) quaternions. (We do
not deal with so-called complex quaternions whose components are complex.) The
notation R has its usual sense.

We use the standard notations i, j, k for the quaternionic imaginary units;
recall that

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

We always use lower indices to denote the components of a quaternion as follows:

H � ξ = ξ0 + ξ1i+ ξ2j + ξ3k,

where ξ0, ξ1, ξ2, ξ3 ∈ R.
We often treat sets of some quaternions geometrically using the well-known in-

terpretation of any quaternion ξ = ξ0 + ξ1i+ ξ2j + ξ3k as the point (ξ0, ξ1, ξ2, ξ3)
of the four-dimensional space.

We name a quaternionic equation any one in which every known parameter is a
quaternion; as for solutions of such equations, we always consider solutions being
quaternions. Analogously, real equations are ones with real parameters and real so-
lutions being considered. In every quaternionic equation of this paper the letter x

denotes the unknown and other letters denote given parameters, if there is no other
explanation.

Let S be the set of the solutions of a given polynomial quaternionic equation. Fix
a certain real number ξ0, and let Sξ0 be the set of such x ∈ S for which x0 = ξ0.
We will call this set Sξ0 a real-fixing section of the set of the solutions of the given
equation. Geometrically Sξ0 is the intersection of S and the (three-dimensional)
hyperplane given by x0 = ξ0 (where an arbitrary point of the hyperplane is denoted
by (x0, x1, x2, x3)). Thus Sξ0 is really a “section” of S by this hyperplane if
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one agrees to use the word “section” for such three-dimensional structure. Such
real-fixing section can be viewed as a figure in the usual three-dimensional space of
points (x1, x2, x3).

In what follows the notation Sξ0 will be used sometimes without additional
explanation in the same sense as in the previous paragraph.

3. Simple quadratic equations with a split square

We will call a quadratic quaternionic equation simple if every its quadratic term has
only one constant, that is, can be written as either αx2, or x2α, or xαx. So, an
arbitrary simple quadratic quaternionic equation can be written as

λ∑
�=1

a(�)x2 +
μ∑

�=1

x2b(�) +
ν∑

�=1

xc(�)x+
m∑

�=1

p(�)xq(�) + s = 0.

Yet, a very useful property of such simple equations is the fact that now it is possible
to apply distributivity to decrease the number of the terms. As a result an arbitrary
simple quadratic quaternionic equation can be rewritten as

ax2 + x2b+ xcx+ (pxq) + s = 0, where (pxq) =
m∑

�=1

p(�)xq(�).(1)

Now we will study the dimensions of real-fixing sections of the sets of the solutions
of equations of this form.

Note also that we call the terms ax2 and x2b non-split squares, while the
term xcx is called a split square. (In general, that is, if an equation may be not
simple, a split square has the form αxβxγ and a non-split one has the form αx2γ.
Such terminology will be used in Section 4.) If the coefficient of at least one from
these three terms is real then it is possible to change position of the coefficient; for
example, if c ∈ R then one can make a non-split square cx2 from the split square
xcx. For the theorem below the presence of a “true” split square will be essential,
and thus we will assume that c �∈ R.

Theorem 1. Let a quaternionic equation of the form (1) be given, where c �∈ R.
Then any real-fixing section of the set of the solutions of this equation is either the
empty set, or a d-dimensional set with d ≤ 1, or a two-dimensional set containing
a plane.

Proof. Let us pass from (1) to the corresponding system of real equations. It will
be unnecessary for our considerations to write down carefully terms generated by
(pxq). It is obvious that these terms constitute an expression linear with respect
to the unknowns in each equation of the system. Thus we will denote these linear
expressions by Lt(x0, x1, x2, x3), where t is an integer indicating which equation
of the system is considered.

So, direct calculations give the following system equivalent to (1):
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(a0 + b0 + c0)x2
1 − (a0 + b0 + c0)x2

2 − (a0 + b0 + c0)x2
3

−2(a1 + b1 + c1)x0x1 − 2(a2 + b2 + c2)x0x2 − 2(a3 + b3 + c3)x0x3

+L0(x0, x1, x2, x3) + (a0 + b0 + c0)x2
0 + s0 = 0,

−(a1 + b1 + c1)x2
1 − (a1 + b1 − c1)x2

2 − (a1 + b1 − c1)x2
3

−2c2x1x2 − 2c3x1x3 + 2(a0 + b0 + c0)x0x1 + 2(b3 − a3)x0x2

+2(a2 − b2)x0x3 + L1(x0, x1, x2, x3) + (a1 + b1 + c1)x2
0 + s1 = 0,

−(a2 + b2 − c2)x2
1 − (a2 + b2 + c2)x2

2 − (a2 + b2 − c2)x2
3

−2c1x1x2 − 2c3x2x3 + 2(a3 − b3)x0x1 + 2(a0 + b0 + c0)x0x2

+2(b1 − a1)x0x3 + L2(x0, x1, x2, x3) + (a2 + b2 + c2)x2
0 + s2 = 0,

−(a3 + b3 − c3)x2
1 − (a3 + b3 − c3)x2

2 − (a3 + b3 + c3)x2
3

−2c1x1x3 − 2c2x2x3 + 2(b2 − a2)x0x1 + 2(a1 − b1)x0x2

+2(a0 + b0 + c0)x0x3 + L3(x0, x1, x2, x3)
+(a3 + b3 + c3)x2

0 + s3 = 0.

(2)

We have to prove that with each fixed x0 the dimension of the set of the solutions
of this system does not equal 3 and if it equals 2 then it contains a plane.

Each equation of (2) is an equation of degree 2 with respect to x1, x2, x3, so that
as a rule it generates a two-dimensional quadric; a three-dimensional set appears only
if every coefficient of the equation equals 0, and then it is the whole three-dimensional
space. We have to consider the intersection of four sets generated by all equations
of the system. Obviously, this intersection may be tree-dimensional only if every
equation generates a three-dimensional set, that is, has only zero coefficients. It is
easy to see that in this case c1 = c2 = c3 = 0, so that c ∈ R; it is in contradiction
with the condition of the theorem. So, we have already proved that the dimension
of the set of the solutions does not equal 3.

Then we investigate the case where the dimension equals 2. First of all, take
into attention the following known geometric fact: if the intersection of two two-
dimensional quadrics is a two-dimensional figure then either these quadrics coincide,
or their intersection contains a plane (in the last case each quadric is the union of
two planes (distinct or coinciding), and the intersection may be a plane or the union
of a plane and a line). Since a plane in the intersection is allowed by the theorem,
we should consider (and refute) only the case where the intersection would be two-
dimensional, but containing no plane. It means that two-dimensional quadrics can
provide such intersection only if they coincide.

Taking into attention the information from the previous paragraph, it is easy to
see that we should consider the case where one of the following four situations takes
place:

1) every equation of (2) generates the same two-dimensional quadric;
2) three equations of (2) generate the same two-dimensional quadric, and one

equation of (2) generates the whole three-dimensional space;
3) two equations of (2) generate the same two-dimensional quadric, and two

equations of (2) generate the whole three-dimensional space;
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4) one equation of (2) generates a two-dimensional quadric, and three equations
of (2) generate the whole three-dimensional space.

We stress that the words “the same” hereafter mean “having completely identical
position in the space” (not only shape and size).

Is it possible for the second equation to generate the three-dimensional space?
Supposing that all its coefficients are zeros we get in particular:

a1 + b1 + c1 = a1 + b1 − c1 = c2 = c3 = 0.

These equalities imply that c1 = c2 = c3 = 0 and thus c ∈ R, a contradiction with
the condition of the theorem. Therefore it is impossible for the second equation to
generate the three-dimensional space. Quite analogously one proves that neither the
third equation, nor the fourth one generates the three-dimensional space. Thus only
the first equation may do, and from the above-mentioned four situations only the
first two are possible.

Suppose that every equation of (2) generates the same two-dimensional quadric
(the first situation). Then the first equation may generate only a sphere (since the
coefficients at x2

1, x2
2, and x2

3 are the same and there is no term with x1x2,
x1x3, or x2x3). Since all four quadrics have to be the same, it is necessary that
a sphere should be in every other equation. Then these three equations have to
possess the same property as was just mentioned in brackets. Thus it is easy to see
that c1 = c2 = c3 = 0, and this gives again a contradiction.

So, the only possibility is the second situation. Moreover it is understandable from
above reasonings that the equation generating the whole three-dimensional space is
the first one. The other three equations have to generate the same two-dimensional
quadric. But it is possible only if the coefficients of the equations are proportional
(see, for example, [12]); in particular, if one equation has zero at a certain product
of the unknowns then other equations have zero at the same product. Applying this
to the products x1x2, x1x3, and x2x3 we easily get

c1 = c2 = c3 = 0,

and this gives again a contradiction.
So, any situation giving a two-dimensional surface in the intersection is impossible

if this surface does not contain any plane, and the theorem is proved. �
It is also interesting to note that both 0- and 1-dimensional sets, allowed according

to Theorem 1, as far as the empty set, are really present among real-fixing sections
of the sets of the solutions of equations of the form (1). Moreover there exists at
least one equation of this form whose set of solutions has real-fixing sections of all
these three types. An example is

xix = i.

Solving it by passing to a system of real equations it is not difficult to obtain its
solution in the form {

x1 = 0,
x2

2 + x2
3 = x2

0 − 1.
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If x0 < 1 then the real-fixing section is the empty set. If x0 = 1 then the real-fixing
section is a point, that is, its dimension is 0. If x0 > 1 then the real-fixing section
is a circle in the plane x1 = 0, that is, its dimension is 1.

As for figures containing planes, we do not know whether they can arise as real-
fixing sections of the set of solutions of (1).

4. A type of quadratic equations with two split squares

Let us pass to quadratic quaternionic equations containing two split squares. In this
section we will study a very narrow particular case of such equations. Note firstly
that the considered equations will have no other terms besides two split squares and
a constant:

αxβxγ + λxμxν + σ = 0.(3)

In addition we assume that there is no zero among the coefficients α, β, γ, λ,
μ, and ν (to assure that any from the both split squares does not equal 0). The
equation (3) can be simplified by multiplication by γ−1 on the right and by λ−1

on the left. Then it gets the following form:

axbx+ xcxd+ s = 0.(4)

At last we introduce one more restriction on the coefficients of (4). Namely, we
assume that the quaternions a, b, c, and d have such a simple structure that all
their real components and components at j and k equal 0, so that

a = a1i, b = b1i, c = c1i, d = d1i where a1, b1, c1, d1 ∈ R.(5)

The following theorem gives some information about dimensions of real-fixing sec-
tions of the set of the solutions of such equations.

Theorem 2. Let a quaternionic equation of the form (4) be given with non-zero
coefficients a, b, c, d of the form (5). Then any real-fixing section of the set of the
solutions of this equation is not of the dimension 3. Moreover if some Sξ0 of these
real-fixing sections is of dimension 2 then one of the following two situations occurs:

1) the section contains a plane;
2) ξ0 = 0 and this section is a hyperboloid or a conic surface.

Proof. Taking into attention the structure of the coefficients of the given equation
one obtains the following equivalent system of real equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a1b1 + c1d1)x2
1 − (a1b1 + c1d1)x2

2 − (a1b1 + c1d1)x2
3

−(a1b1 + c1d1)x2
0 + s0 = 0,

−2(a1b1 + c1d1)x0x1 + s1 = 0,
2(a1b1 − c1d1)x1x3 + s2 = 0,
2(a1b1 − c1d1)x1x2 + s3 = 0.

(6)
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Let us introduce notations A and B for the following real numbers:

A := a1b1 + c1d1, B := a1b1 − c1d1.

Then we can rewrite (6) as follows:⎧⎪⎪⎨
⎪⎪⎩

Ax2
1 −Ax2

2 −Ax2
3 −Ax2

0 + s0 = 0,
−2Ax0x1 + s1 = 0,
2Bx1x3 + s2 = 0,
2Bx1x2 + s3 = 0.

(7)

We will investigate separately the following cases:

1) A = B = 0;
2) A = 0, B �= 0;
3) A �= 0.

First of all, it is easy to conclude that the first case is impossible because in this
case a1b1 = c1d1 = 0, that is in contradiction with the condition of the theorem.

Then let A = 0, B �= 0. In this case we can rewrite (7) as follows:⎧⎪⎪⎨
⎪⎪⎩

s0 = 0,
s1 = 0,
2Bx1x3 + s2 = 0,
2Bx1x2 + s3 = 0.

Here all real-fixing sections are identical (since x0 is absent in the system) and
they are not empty only if s0 = s1 = 0; then it is sufficient to consider the following
system: {

2Bx1x3 + s2 = 0,
2Bx1x2 + s3 = 0.

Since B �= 0, the dimension cannot equal 3. Moreover these two equations cannot
generate the same quadric (since the first one has 0 at x1x2 and 2B �= 0 at x1x3,
but the second one has 2B �= 0 at x1x2 and 0 at x1x3). Similarly to analogous
reasoning in the proof of Theorem 1 we conclude that if the intersection of these two
quadrics is two-dimensional, then it contains a plane and thus the theorem holds in
this case.

Let at last A �= 0. Then the first equation of (7) generates a hyperboloid or a conic
surface. It is clear that any other equation of this system cannot generate the same
surface as the first one. Therefore: 1) any three-dimensional set in the intersection is
impossible; 2) one can expect to get a two-dimensional one only if each from the last
three equations of (7) generates the whole three-dimensional space (of course, with
some fixed x0). This is possible only if all coefficients of these equations are zeros.
Then, observing the second equation, we conclude in particular that −2Ax0 = 0.
Since now A �= 0, we get x0 = 0. The fixed x0 is denoted by ξ0 in the theorem.
So, it is understandable that the theorem is again true (and, in particular, now the
section is a hyperboloid or a conic surface). �



62 D. Mierzejewski

It is interesting to consider examples of equations of the form (4) providing
hyperboloids or conic surfaces in the real-fixing sections S0. An example is

ixix+ xixi+ s0 = 0,(8)

where s0 ∈ R (s0 has to equal 0 for a conic surface and some other real number
for a hyperboloid). According to the terminology of [4], the equation (8) is not
multi-quasi-spherical. Thus now we have refuted a hypothesis stated in [4] and [5]
that all quadratic quaternionic equations would be multi-quasi-spherical.

Remark. Performing some reasonings of symmetry it is easy to understand that
Theorem 2 remains true if the conditions (5) are changed toy

a = a1j, b = b1j, c = c1j, d = d1j

or
a = a1k, b = b1k, c = c1k, d = d1k.
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WYMIARY PRZEKROJÓW ZBIORÓW ROZWIA̧ZAŃ
NIEKTÓRYCH RÓWNAŃ KWADRATOWYCH
KWATERNIONOWYCH

S t r e s z c z e n i e
Badamy zbiory rozwia̧zań równań kwadratowych kwaternionowych pewnych dwóch

rodzajów metoda̧ przekrojów hiperp�laszczyznami prostopad�lymi do osi rzeczywistej.
Mianowicie, uzyskujemy odpowiedź na pytanie o możliwe wymiary takich przekrojów. Dla
obu rozpatrywanych rodzajów równań otrzymujemy, że żaden z rozpatrywanych przekrojów
nie może być trójwymiarowy, lecz dwuwymiarowy i to tylko w niektórych szczególnych przy-
padkach, miȩdzy innymi, dla dowolnego równania kwaternionowego postaci

ax2 + x2b + xcx +
m∑

�=1

p(�)xq(�) + s = 0,

gdzie c �∈ R; taki przekrój może być dwuwymiarowy tylko wtedy, gdy zawiera p�laszczyznȩ.
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SOME COBWEB POSETS DIGRAPHS – ELEMENTARY PROPER-
TIES AND QUESTIONS

Summary
A digraph that represents reasonably a scheduling problem should have no cycles i.e.

it should be DAG i.e. a directed acyclic graph. Here down we shall deal with special kind
of graded DAGs named KoDAGs. For their definition and first primary properties see
[1], where natural join of di-bigraphs (directed bi-parted graphs) and their corresponding
adjacency matrices is defined and then applied to investigate cobweb posets and their
Hasse digraphs called KoDAGs.

In this paper we extend the notion of cobweb poset while delivering some elementary
consequences of the description and observations established in [1].

1. Introduction to the subject

It is now a Wiki important knowledge that an incidence structure is a triple C =
(P,L, I) where P is a set of points, L is a set of lines and I ⊆ P ×L is the incidence
relation; I = P × L for KoDAGs. (Compare: V = P ∪ L,P ∩ L = ∅; P = black
vertices = points, L= white vertices=lines).

The elements of I are called flags. If (p, l) ∈ I we say that point p “lies on” line l.
The relation I is equivalently defined by its bipartite digraph G(I). The relation I

and its bipartite digraph G(I) are equivalently defined by theirs biadjacency matrix.
The example of thus efficiently coded finite geometries include such popular exam-
ples as Fano plane – a coding potrait of the distinguished composition algebra of
J. T. Graves octonions (1843), a friend of William Hamilton, who called them octaves
[2].

The incidence matrix of an incidence structure C is a biadjacency matrix of
the Levi graph of the C structure.

The biadjacency matrix of a finite bipartite graph G with n black vertices and m
white vertices is an n×m matrix where the entry aij is the number of edges joining
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black vertex i and white vertex j. In the special case of a finite, undirected, simple
bipartite graph, the biadjacency matrix is a Boolean (0, 1)-matrix.

The adjacency matrix A of a bipartite graph with the reduced adjacency
matrix or – under synonymous substitution – the biadjacency Boolean matrix
B is given by

A =
(

0 B

BT 0

)
.

The adjacency matrix A of a bipartite digraph
→
Kk,l (see: [1]) coded via its reduced

adjacency or biadjacency Boolean matrix B is according to [1] defined by

A =
(

0k,k B(k × l)
0l,k 0l,l

)
, where k = |P |, l = |L|.

Example 1.

Fig. 1:

Fig. 2:

Fig. 1 displays (upside down way with respect to drawings in [1]) the bipartite

digraph
→
K2,3. It is obviously Ferrers dim 1 digraph [1]. Fig. 2 displays the bipartite

sub-digraph of the K-digraph
→
K2,3. It is not Ferrers dim 1 digraph. What is its

Ferrers dimension? Adjoin minimal number of arcs in the Fig. 2 in order to get
Ferrers dim 1 digraph, bi-partite, of course.

The adjacency matrices coding digraphs from the example above are shown be-
low.

AKoDAG =
[
O2×2 I(2 × 3)
O3×2 O3×3

]
, i.e. AKoDAG =

(
02,2

111
111

03,3 03,3

)
,

Anot−cobweb =
(

02,2
101
110

03,3 03,3

)
,
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where Os×s stays for (k ×m) zero matrix while I(s× k) stays for (s× k) matrix of
ones, i.e. [I(s× k)]ij = 1; 1 ≤ i ≤ s, 1 ≤ j ≤ k.

Here above in the Example 1 we are led implicitly to the notion of an extended
cobweb poset as compared to [1] and references therein. For associated poset – see [1].

Definition 1 (extended cobweb poset – naturally graded). Let D = (Φ,≺·) be a
transitive irreducible digraph. Let n ∈ N ∪ {∞}. Let D be a natural join D =
⊕→n

k=0 Bk of Ferrers dim 1 bi-partite subdigraphs Bk of di-bicliques
→

Kk,k+1= (Φk ∪ Φk+1,Φk × Φk+1), n ∈ N ∪ {∞}.
The poset Π(D) associated to this graded digraph D = (Φ,≺·) is called the extended
cobweb poset or just cobweb, as a colloquial abbreviation.

Sometimes when we are in need we shall distinguish by name the complete
cobwebs (i.e. cobwebs represented by KoDAGs) from the overall family of cobwebs
(the extended cobweb posets as introduced above).

Colligate with Levi graph of an incidence structure. Each incidence struc-
ture C corresponds to a bipartite graph called Levi graph or incidence graph with a
given black and white vertex coloring where black vertices correspond to points and
white vertices correspond to lines of C and the edges correspond to flags.

Question 1. Is the natural join operation technique as started in [1] applicable to
sequences of Levi graphs of incidence structures? The answer is of course in affirma-
tive.

In the case of graded digraphs with the finite set of minimal elements we have
what follows (Observation 7 in [1]).

Observation 1. Consider bipartite digraphs chain obtained from the di-biqliqes
chain via deleting or no arcs making thus [if deleting arcs] some or all of the di-

bicliques
→

Kk,k+1 not di-biqliques; denote them as Gk. Let Bk = B(Gk) denotes their
biadjacency Boolean matrices correspondingly. Then for any such F -denominated
chain [hence any chain] of bipartite digraphs Gk the general formula is:

B (⊕→n
i=1 Gi) ≡ B[⊕→n

i=1 A(Gi)] = ⊕n
i=1B[A(Gi)] ≡ diag(B1, B2, ..., Bn) =

=

⎡
⎢⎢⎢⎢⎣
B1

B2

B3

...

Bn

⎤
⎥⎥⎥⎥⎦ , n ∈ N ∪ {∞}

Comment 1 (not only notation matter). Let us denote by 〈Φk → Φk+1〉 the di-
bicliques denominated by subsequent levels Φk,Φk+1 of the graded F -poset P (D) =
(Φ,≤) i.e. levels Φk,Φk+1 of its cover relation graded digraph D = (Φ,≺·) i.e. Hasse
diagram (see notation in the author’s and others papers quoted in [1]). Then one may
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conditionally approve the following identification if necessary natural join condition
[1] is implicit within this identification:

B (⊕→n
k=1 〈Φk → Φk+1〉) = B

(
n⋃

k=1

〈Φk → Φk+1〉
)
.

If the conditioned set sum of digraphs concerns an ordered digraphs pair satisfying
the natural join condition [1] what makes such a conditioned set sum of vertices
and simultaneously the set sum of disjoint arcs Ek, Ek+1 families non-commutative.
Note that this what just has been said is exactly the reason of

B(G1⊕→ G2) = B(G1 ∪G2) = B(G1) ⊕B(G2).

2. On number of finite cobwebs an related questions

2.1. Two schemes and a question

Before we deal with questions “how many” let us jot first two schemes of two state-
ments which may be simultaneously referred to relations, their digraphs or corre-
sponding adjacency matrices. Secondly comes an elementary question without giving
an answer.

(Ferrers dim 1)⊕→ (Ferrers dim 1) = (Ferrers dim 1).

(Obvious: use 2 × 2 permutation sub-matrix forbidding i.e. 2 × 2 permutation sub-
matrix disqualification criterion)

Ferrers ⊕→ Ferrers = Ferrers.
See Observation 3 in [1] and note that resulting biadjacency matrices contain none

of two 2×2 permutation matrices. Nota bene the Observation 3 from [1] follows from
the above obvious statements.

Question 2. For biadjacency matrices B(G1) = B1 and B(G2) = B2 of bipartite
digraphs G1 and G2 we have the matrix exponential rule

exp[B1 ⊕B2] = exp[B1] ⊗ exp[B2] ,

where ⊗ stays for the Kronecker product.
Let F be any natural number-valued sequence. Let AF denotes the Hasse matrix

of the F -denominated cobweb poset 〈Φ,≤〉 [1]. The ζ matrix is then the geometrical
series in AF : ζ = (1 − AF )−1 c©. (Recommended: consult the remark from page
12 in [1] on ζ = exp[A] in the cases of the Boolean poset 2N and the Ferrand-
Zeckendorf poset of finite subsets of F = N without two consecutive elements [3]).
The Question 2 is: find the rule if any for

ζB1⊕B2 = (1 −B1 ⊕B2)−1 c© =?
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2.2. How many

Notation for this subsection
Consider positive integer N composition

N = f1 + f2 + ...+ fk where 0 < f1, f2, ..., fk ≤ N.

The compositions’ type
→
k= 〈f1, f2, ..., fk〉 labels compositions of the chosen positive

integer N , where N = |V | labels on its own the partial graded orders PN = 〈V,≤〉
with N points (vertices) and the partition

V =
k⋃

r=1

Vr, Vr ∩ Vs = � for r �= s, fr = |Vr | and r, s = 1, ..., k, k = 1, ..., N.

The partial order ≤ is the subset according to ≤⊆ V1 × V2 × ... × Vk. The symbol{
N
k

}
denotes the array of Stirling numbers of the second kind.

Obvious from obvious and questions
The number of all k-tuples for any k-block ordered partition < V1, V2, . . . , Vk >

equals to

|V1| · |V2| · . . . · |Vk| =
k∏

r=1

Vr.

The number of all complete cobweb posets PN = 〈V,≤〉 with |V | = N elements is
equal to TN = the number of ordered partitions of V. – Why? Note: The number of
ordered partitions of

〈f1, f2, ..., fk〉 =
→
k type is equal to

(
n

f1, f2, ..., fk

)
=

n!
f1!f2!...fk!

.

Thereby: the number of all complete cobweb posets

PN = 〈V,≤〉 of 〈f1, f2, ..., fk〉 =
→
k type is equal to

(
n

f1, f2, ..., fk

)
,

where fr = |Vr| and r = 1, ..., k for all particular
→
k type k-block ordered partitions

k⋃
r=1

Vr = V.

Altogether:

2.2.1. The number Cobc(N,
→
k ) of all complete of the type 〈f1, f2, ..., fk〉 ≡

→
k cobweb

posets PN is given by:

Cobc(N,
→
k ) =

(
N

f1, f2, ..., fk

)
, N = f1 + f2 + ...+ fk, 0 < f1, f2, ..., fk ≤ N,

2.2.2. The number Cobc(N, k) of all complete k-level cobweb posets PN reads:

Cobc(N, k) =
∑

f1+f2+...+fk=N

0<f1,...,fk≤N

(
N

f1, f2, ..., fk

)
= k!

{
N

k

}
=

k∑
r=0

(−1)N−krN

(
N

r

)
.
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Cobc(N, k) = number of surjections f : V �→ [k].

2.2.3. The number Cobc(N) of all complete cobweb posets PN : is then the sum:

Cobc(N) =
N∑

k=1

k!

{
N

k

}
.

Cobc(N) = TN = the number of ordered partitions of V.

2.2.4. The number K(N,
→
k ) of all k-ary relations of the given

→
k type is:

K(N,
→
k ) = 2

∏k
r=1 Vr − 1,

where
N = f1 + f2 + ...+ fk, 0 < f1, f2, ..., fk ≤ N, fr = |Vr|,

and r = 1, ..., k while k = 1, ..., N.

2.2.5. For the number K(N) of all type k-ary relations , k = 1, . . . , N we then have

K(N) =
∑

f1+f2+...+fk=N

0<f1,... ,fk≤N

[2f1·f2·...·fk − 1].

2.2.6. Question 3. The number of all k -level graded posets PN = 〈V,≤〉 with
|V | = N elements where the partial order ≤ is the subset of Cartesian product:

≤⊆ V1 × V2 × ...× Vk

and where
fr = |Vr|, r = 1, ..., k and k = 1, ..., N

while N = f1 + f2 + ...+ fk , 0 < f1, f2, ..., fk ≤ N ... equals ?

2.2.7. Question 4. The number of all graded posets PN = 〈V,≤〉 with |V | = N

elements for any type
→
k , k = 1, . . . , N ... equals ?
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SKIEROWANE GRAFY TZW. COBWEB POSETÓW
– KILKA W�LAŚCIWOŚCI ORAZ ZAGADNIEŃ ELEMENTARNYCH

S t r e s z c z e n i e
Grafy skierowane opisuja̧ce rozsa̧dne algorytmy zadań – to grafy acykliczne czyli tzw.

DAG’s, które można zawsze odczytywać jako diagramy Hasse’go czȩściowo uporza̧dkowa-
nych zbiorów (posets). W niniejszym artykule rozważa siȩ szczególne czȩściowo uporza̧dko-
wane zbiory ze stopniowaniem zwane “cobweb posets”. Stanowia̧ one w z�la̧czaniu natural-
nym cia̧gi Kompletnych Grafów dwudzielnych – uporza̧dkowanych (ordered) oraz skierowa-
nych i acyklicznych (DAG’s). Na cześć Profesora Kazimierza Kuratowskiego – wspó�ltwórcy
wspó�lczesnej teorii grafów – autor nazwa�l owe grafy Hassego – KoDAGs.

W niniejszej pracy przedstawia siȩ elementarne skutki takiego określenia struktury
KoDAG oraz zadaje siȩ – wraz ze wskazówkami – kilka naturalnych zadań-ćwiczeń o charak-
terze kombinatorycznym.
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BINARY ALLOY THIN FILMS VS. LENNARD-JONES AND MORSE
POTENTIALS
NOTE ON BINARY ALLOYS WITH ARBITRARY ATOMS CONCENTRATIONS

Summary
The study of thin films has been very intense during the last decades. It is observed,

both theoretically and experimentally that in thin films samples the concentrations of atoms
differ between inner and outer layers in broad range of temperature. In this paper we shall
present the theoretical model and measure this phenomenon numerically.

The model we shall apply, which is one of many, is the Valenta-Sukiennicki model [9]
considering the pairwise interactions between atoms. Based on our previous considerations
[32,34] we decide to use the extended Valenta–Sukiennicki model, which includes both the
first and second neighbours’ interactions. The aim of this paper is to compare the results of
our calculations obtained earlier [31,32], when the Lennard-Jones potential was considered
with the new results when we apply the Morse potential instead.

In this study we shall consider AB3 fcc alloys and ABC2 bcc alloys. First we recall
the ternary alloys description within the Valenta–Sukiennicki model [33]. Then, the binary
alloys are seen as special cases of ternary alloys.

We also make a note on binary AxB1−x fcc alloys of arbitrary atoms concentrations.

Introduction

The study of thin films has been very intense during the last decades. One of the
reasons is the increase of technical possibilities to investigate them experimentally.
The other one is enormous technical applications.

It is observed, both theoretically and experimentally that in thin films samples
the concentrations of atoms differ between the inner and outer layers in various
temperatures [5, 7, 9, 18]. There are four classical surface effects worth considering:
segregation, relaxation (change of distance between layers), reconstruction (change
of atom ordering of the surface), and adsorbtion [17]. In this paper we shall inves-
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tigate the segregation effects in chosen binary and ternary alloy thin films and we
shall neglect the other three phenomena as they shall probably be of small influence
on the segregation effect [17]. By the word “segregation” we shall mean the phe-
nomenon of occurence of different concentrations of atoms in layers in a broad range
of temperatures [47].

There are various theoretical approaches to thin films phenomena [7]. Below
we present one of them, the Valenta–Sukiennicki model [9]. We shall consider the
pairwise interactions between atoms including both the first and second neighbours.
As the first neighbours interact more strongly than the second ones, we shall propose
proportionality coefficients necessary in order to this fact into account: the first
approach has been made before [32] with the use of the Lennard-Jones potential.
In this paper we shall also include the Morse potential and compare the numerical
results for the two approaches.

In our previous paper [32] in case of AB3 fcc alloy and the Lennard-Jones po-
tential included, small corrections were obtained when the second or the second and
third nearest neighbours were included compared to the results obtained for the
first neighbours only. However, if we include the 2nd neighbours in case of ABC2

bcc alloy, the corrections, compared to the case with 1st neighbours only, are quite
big. This phenomenon can be explained in the following way: it can be estimated,
that in case of the first alloy the second neighbours are adding about 6% of sum of
interactions of the first neighbours, while the third neighbours add about 7% more
to both the first and second neighbours interactions. These numbers are not big.
In the case of the second alloy the situation is different: we may estimate that the
influence of 2nd neighbours is about 30% of the 1st ones [33]. The third neighbours
seem to be adding about 7% more, so their interactions can be omitted. In numerical
calculations for ABC2 bcc alloys we have obtained big differences in the graphs of
long-range order parameters and atoms concentrations in layers between the situa-
tions when the first neighbours were included, and the first and second neighbours
were included.

Based on these considerations we decide to use the extended Valenta-Sukien-
nicki model including both the first and the second neighbours interactions. We
shall consider two alloys: AB3 fcc alloy and ABC2 bcc alloy, both of (111) surface
orientation. We pose the following question: assuming we consider the first and
second neighbours, shall we obtain similar numerical results – in terms of atoms
concentrations in layers and long-range order parameters if, in place of the Lennard-
Jones potential included in earlier papers [32, 33] we include the Morse potential?

The first alloy considered, AB3 fcc of (111) surface orientation, we divide into
equal monoatomic layers (c.f. Fig. 1 (a)), the second one, ABC2 bcc alloy of (111)
surface orientation, we also divide into equal layers, each consisting of four consec-
utive monoatomic layers Fig. 1 (b)).
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(a)

(b)

Fig. 1: The structure of one layer in the case of (a) AB3 fcc alloy of (111) surface orientation;
one layer is equal to one monoatomic layer, (b) in the case of ABC2 bcc alloy of (111) surface
orientation; one layer is composed of four consecutive monoatomic layers.

Valenta-Sukiennicki model for ternary alloys

Below we briefly recall the Valenta–Sukiennicki model for ternary alloys [33]. Given
an infinite (in the plane) thin film of an arbitrary ternary alloyAxByCz , x+y+z = 1,
we divide the system into n identical, not necessarily monoatomic layers parallel to
the surface. We assume each layer consists of N atoms. The whole lattice consists of
three sublattices: α, β and γ, where the α (β or γ) lattice consists in stochiometric
and ordered case of all A (B or C, respectively) atoms. The relative numbers of α
(β, γ) sites are equal to Fα (Fβ or Fγ respectively) and

Fα + Fβ + Fγ = 1.

Namely, we assume

Fα = x = FA, Fβ = y = FB, Fγ = z = FC ,(1)

where FA, FB and FC denote the relative numbers (concentrations) of A, B, C
atoms in the alloy.

Let pσ
X denote the probability that a site σ in i-th layer is occupied by an atom

X , σ ∈ {α, β, γ}, X ∈ {A,B,C}, i = 1, 2, . . . , n. We have:

pα
A(i) + pα

B(i) + pα
C(i) = 1,

pβ
A(i) + pβ

B(i) + pβ
C(i) = 1,(2)

pγ
A(i) + pγ

B(i) + pγ
C(i) = 1.

The concentrations of A atoms (B or C atoms) in layers i = 1, 2, . . . , n are given
by:
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zA(i) = Fαp
α
A(i) + Fβp

β
A(i) + Fγp

γ
A(i),

zB(i) = Fαp
α
B(i) + Fβp

β
B(i) + Fγp

γ
B(i),(3)

zC(i) = Fαp
α
C(i) + Fβp

β
C(i) + Fγp

γ
C(i).

The system has also to satisfy:
n∑

i=1

zA(i) = nFA,
n∑

i=1

zB(i) = nFB ,

(
n∑

i=1

zC(i) = nFC

)
.(4)

The last equation follows from the other two.
We define the long-range order parameters in the following way:

tA(i) =
pα

A(i) − zA(i)
1 − Fα

,

tB(i) =
pβ

B(i) − zB(i)
1 − Fβ

,(5)

tC(i) =
pγ

C(i) − zC(i)
1 − Fγ

for i = 1, 2 . . . , n. In a completely ordered state we have tX(i) = 1, whilst in a
completely disordered state the probabilities of finding, say, an A atom in α, β or γ
sites are the same, so tX(i) = 0, for X ∈ {A,B,C} and i = 1, 2, . . . , n. The three
long-range order parameters are linearly independent and their number cannot be
reduced.

Through the diffusion process the atoms in the lattice tend to obtain positions
which are better from the point of view of total energy of the system. The equilibrium
values of tX(i), zX(i), X ∈ {A,B,C}, i = 1, 2, . . . , n, are obtained when the free
energy of the system given by

F = U − TS(6)

is minimized. U denotes the internal energy, T absolute temperature, S entropy of
the system.

Internal energy

In Bragg-Williams approximation the internal energy of the system is given as the
average over the energies corresponding to a given long-range order. We need to know
the mean number of pairs of nearest neighbours in given layer and neighbouring
layers. We shall be considering only the pairwise interactions between atoms.

Let −vXY denote the interaction energy between atoms X and Y and let 〈XY 〉i,j
denote the number of pairs of neighbouring atoms X and Y such that X is in i-th
layer, Y is in i+ j-th layer. The internal energy of the thin film consisting of n layers
is equal to:
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i - th layer

i + 1 - st layer

r0αα(R1) = 0, r0αβ(R1) = 6, r1αα(R1) = 0, r1αβ(R1) = 3.

Fig. 2: Coefficients r0
αα(R1), r0

αβ(R1) and r1
αα(R1), r1

αβ(R1) in the lattice of AB3 fcc alloy
with orientation (111).

U = −
∑

1≤i≤n

(
〈XX〉i,0 vXX + 〈XY 〉i,0 vXY

)

−1
2

∑
i,j>0

(
〈XX〉i,+j

vXX + 〈XY 〉i,+j
vXY

)
(7)

−1
2

∑
i,j>0

(
〈XX〉i,−j

vXX + 〈XY 〉i,−j
vXY

)
,

where
X,Y ∈ {A,B,C}, X �= Y , vXY = vY X and i, i± j ∈ {1, 2, . . . , n}.

Certainly, the interaction energy −vXY depends not only on the type of atoms but
also on the distance between them. In order to include different pairs of atoms
situated at different distances we shall make appropriate calculations based either
on the Lennard-Jones or the Morse potentials.

Number of pairs of neighbours

Let us fix distance R between the sites of the alloy lattice. Let rj
στ denote the number

of neighbours of an atom in σ site in i-th layer which are in τ site in i + j-th layer
and the distance between σ and τ sites equals R. The meaning of rj

στ coefficients
for the smallest distance, R1, between the sites of the lattice of AB3 fcc alloy of the
orientation (111) is shown in Fig. 2. R1 = a

√
2

2 , where a is the lattice constant.
The number of pairs 〈XY 〉i,+j of neighbours is given by the formula [33]:
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〈XY 〉i,+j = 1
2NFα

(
pα

Xr
j
ααp

α,+j
Y + pα

Xr
j
αβp

β,+j
Y + pα

Xr
j
αγp

γ,+j
Y

)
+

1
2
NFβ

(
pβ

Xr
j
βαp

α,+j
Y + pβ

Xr
j
ββp

β,+j
Y + pβ

Xr
j
βγp

γ,+j
Y

)
(8)

+ 1
2NFγ

(
pγ

Xr
j
γαp

α,+j
Y + pγ

Xr
j
γβp

β,+j
Y + pγ

Xr
j
γγp

γ,+j
Y

)
,

where
pσ

X = pσ
X(i), pτ,+j

Y = pτ
Y (i + j), X, Y ∈ {A,B,C},

σ, τ ∈ {α, β, γ}, i, i+ j = 1, 2, . . . , n, j = 0,±1,±2.

The values of the coefficients rj
στ concerning the first and second neighbours for both

the AB3 fcc and ABC2 bcc alloys of (111) orientations have been given in [32, 33].

Entropy

According to the well known Boltzmann formula, entropy is given by

S = kB ln g,(9)

where kB denotes the Boltzmann constant and g denotes the number of possible
configurations for given concentrations: zA(i), zB(i), zC(i), and long-range order
parameters: tA(i), tB(i), tC(i), for i = 1, 2, . . . , n. Thus, for ternary alloy we have [33]

g =
n∏

i=1

gi, where

gi =
(

NFα

NFαp
α
A

)(
NFα(1 − pα

A)
NFαp

α
B

)(
NFβ

NFβp
β
B

)(
NFβ(1 − pβ

B)
NFβp

β
A

)
·

·
(

NFγ

NFγp
γ
C

)(
NFγ(1 − pγ

C)
NFγp

γ
A

)
.

Further we obtain:

S = kB ln
n∏

i=1

{
(NFα)!

(NFαpα
A)!(NFαpα

B)!(NFαpα
C)!

·

· (NFβ)!

(NFβp
β
A)!(NFβp

β
B)!(NFβp

β
C)!

· (NFγ)!

(NFγp
β
A)!(NFγp

β
B)!(NFγp

β
C)!

}
,(10)

where pτ
X = pτ

X(i).

Binary alloy as a special case of ternary alloy

Let us consider a system of n layers of a binary alloy AxB1−x with an arbitrary
surface orientation. The system can be seen as a special, degenerate case of a ternary
alloy, if we ’remove’ both C atoms and the corresponding γ sites, i.e. we assume
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FC = Fγ = 0, rj
σγ = rj

γσ = 0, pγ
X(i) = pσ

C(i) = 0 for σ ∈ {α, β, γ},(11)

i = 1, 2, . . . , n,, j = 0,±1,±2. By substituting (11) to the formulae (2), (3), (8), (10)
for ternary alloys we obtain their binary alloys counterparts, all of which might as
well be obtained independently, by straightforward calculations [9]. Thus, in binary
alloys the system of equations describing probabilities (2) becomes

pα
A(i) + pα

B(i) = 1,

pβ
A(i) + pβ

B(i) = 1,
(12)

the system of equations describing concentrations of atoms in layers (3) becomes

zA(i) = Fαp
α
A(i) + Fβp

β
A(i),

zB(i) = Fαp
α
B(i) + Fβp

β
B(i).

(13)

The formula (8) for the number of pairs of neighbours is reduced to

〈XY 〉i,+j = NFα

(
pα

Xr
j
ααp

α,+j
Y + pα

Xr
j
αβp

β,+j
Y

)
+NFβ

(
pβ

Xr
j
βαp

α,+j
Y + pβ

Xr
j
ββp

β,+j
Y

)
,

(14)

where
pσ

X = pσ
X(i), pτ,+j

Y = pτ
Y (i+ j), X, Y ∈ {A,B}, σ, τ ∈ {α, β},

i = 1, 2, . . . , n, j = 0,±1,±2 i, i+ j ∈ {1, 2, . . . , n}.
We also have

tA(i) =
pα

A(i) − zA(i)
1 − Fα

= pα
A(i) − pβ

A(i),(15)

tB(i) =
pβ

B(i) − zB(i)
1 − Fβ

= pβ
B(i) − pα

B(i) = pα
A(i) − pβ

A(i) = tA(i),(16)

which means that in every layer the system is now characterized by only one long-
range order parameter. The formula (10) for entropy becomes

S = kB ln
n∏

i=1

(NFα)!(NFβ)!

(NFαpα
A)!(NFαpα

B)!(NFβp
β
A)!NFβp

β
B)!

.(17)

where pτ
X = pτ

X(i).

Including the first and second neighbours

Both in the case of ternary and binary alloys we are interested in including the
interactions between the first and the second neighbours. Denote by R1, R2 the
distance between the first and second neighbours, respectively. For a given distance
Rj , j = 1, 2, determining the coefficients rj

στ (Rj) is an easy geometric task. The
geometrical structures of the first and second neighbours of every site in two cases:
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(a) of binary AB3 fcc alloy with orientation (111) and (b) of ABC2 bcc alloy with
orientation (111) are illustrated in Fig. 3 (a) and (b), respectively.

If we wish to include both the first and second neighbours then the general
formula for internal energy should be rewritten as

U = −
∑(〈XY 〉R1

vXY (R1) + 〈XY 〉R2
vXY (R2)

)

= −
∑(

〈XY 〉R1
+ 〈XY 〉R2

vXY (R2)
vXY (R1)

)
vXY (R1)(18)

= −
∑

〈XY 〉 vXY (R1)

where 〈XY 〉R1
and 〈XY 〉R2

denote the pairs of atoms which are the first and sec-
ond neighbours, respectively, vXY (R1) and vXY (R2) denote the interaction energy
between the pair of atoms X and Y when they are situated at the distance of R1 or
R2, respectively, and we also denote

〈XY 〉 := 〈XY 〉R1
+ 〈XY 〉R2

vXY (R2)
vXY (R1)

(19)

which includes both the number of first neighbours and a fraction of number of
second neighbours in proportion to the (diminished) strength of a second neighbours
pair interaction with relation to the first neighbours pair. In the light of the new
formula (18) it is natural to define

ε :=
vXY (R2)
vXY (R1)

(20)

which will further be called the relative interaction coefficient. Let us note ε depends
both on the distances R1 and R2 which are different in different types of alloys and
atoms, and probably on the type of potential we include: either the Lennard-Jones
or the Morse potential. The different values of ε will further be calculated.

Having the value of ε we can easily calculate the number of pairs of neighbours
according to formulae (8) or (14) appropriately, by putting

rj
στ = rj

στ (R1) + εrj
στ (R2).(21)

In this way the first and second neighbours are taken together, while the influence
of the second neighbours is diminished by the factor ε.

Calculating the relative interaction coefficients

Lennard-Jones potential. If we include the Lennard-Jones potential given by the
formula

V (R) = ε

(( ρ
R

)12

−
( ρ
R

)6
)
,(22)

where ρ denotes the distance at which the potential equals 0, then it seems reasonable
to neglect the quickly diminishing repulsive forces and include only the attractive
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(a)

(b)

Fig. 3: Figure 3. The geometrical structure of the first and second neighbours of every site

in two cases: (a) binary AB3 fcc alloy with orientation (111), R1 =
√

2
2

a, R2 = a, where

a denotes the lattice constant; (b) ABC2 bcc alloy with orientation (111), R1 =
√

3
4

a,
R2 = 1

2
a, where a denotes the lattice constant.

van der Waals forces, proportional to the inverse of the sixth power of the distance
between atoms. Therefore the relative interaction coefficient is equal to

εL−J =
vXY (R2)
vXY (R1)

=
(R1)6

(R2)6
.(23)

Consequently, in the case of AB3 fcc alloy we have

εL−J =
(
√

2
2 a)6

(a)6
= 0.125

and ABC2 bcc alloy we have

εL−J =
(
√

3
4 a)6

(1
2a)6

≈ 0.422 .
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Morse potential. We have the following formula for the Morse potential [24]:

Φ̃M (l) = CM

[
1
α
x1 exp(αy) − 1

β
x2 exp(βy)

]
,(24)

where
CM =

αβD0

α− β
, x1 = exp[α(1 − l/r0)], x2 = exp[β(1 − l/r0)],

α, β are expressing the slope of the potential curve, r0 and D0 define the minimum
of the potential and are respectively equal to the equilibrium distance of two isolated
atoms and their dissociation energy. About the renormalizing parameter y, described
in the paper of Malinowska-Adamska et al [24, 25] we assume it is equal to zero.

In the case of the Morse potential included, due to many necessary coefficients we
cannot give an universal formula for the value of εM valid for all types of alloys and
atoms. Instead, we shall make use of the paper of Malinowska-Adamska et al [45] in
which the coefficients for some kinds of atoms have been calculated.

In case of AB3 fcc alloys we substitute into the formula (24) the coefficients for
Ni atoms given in [24]:

α = 10.54, β = 5.24, r0 = 2.549 · 10−10 m, D0 = 45.6 · 10−21 J

and we obtain the value of εM for fcc alloys

εM = 0.2199.

In the case of ABC2 bcc alloys we similarly obtain

εM = 0.691.

Assumptions about the interactions between atoms

Binary alloys. Throughout the paper we consider the interactions between atoms
A and B: vAA, vBB and vAB = vBA. We shall define the following V parameter:

V = vAB − 1
2

(vAA + vBB).(25)

V has positive value for ordering and negative value for segregating alloys. Addi-
tionally we define

Δ = (vBB − vAA)/V.(26)

Like in [9] we shall always assume V > 0, Δ = 0.

Ternary alloys. We shall assume the interaction energies between atoms satisfy

vXX = vY Y and vXY > vXX if X �= Y, X, Y ∈ {A,B,C}.(27)

We define the following V parameter

V = vAB + 2vAC + 2vBC − (vAA + vBB + 2vCC)/2.(28)

We shall make our calculations for the alloy which satisfies

vAB = vAC = vBC = 1.25 · vAA.(29)
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Numerical results

In the case of AB3 fcc the graphs of the long-range order parameters and atoms
concentrations in layers obtained when the potential taken into account was either
the Lennard-Jones or the Morse potential seem to be similar (c.f. Fig 4). Regardless
of the type of potential included we observe the following phenomena: the alloy
is perfectly ordered at the temperature of 0oK; with the rise of temperature the
differences of concentrations in layers appear; the A atoms tend to have bigger
concentrations in the interior layers than in the exterior ones; The concentrations of
atoms in layers 1 and 6, 2 and 5, 3 and 4 are identical; there exists temperature at
which all the long-range order parameters drop to zero. The most visible difference
is that the dropping temperature of the long-range order parameters is lower in the
case of Morse potential than in the case of the Lennard-Jones potential included.

If we consider the ABC2 bcc alloy of (111) surface orientation and the two po-
tentials, then again we observe relative similarity. And, again, the long-range order
parameters drop temperature is lower in the case of Morse potential than in the case
of Lennard-Jones potential included (c.f. Fig 5).

A note on binary alloys with arbitrary atoms concentrations

In this section we would like to make corrections to the subject considered previously
[34].

Let us consider binary AxB1−x fcc alloy with (111) surface orientation and an
arbitrary atoms concentration, FA = x. As it has been stated before, in this type
of alloy the second neighbours do not modify the results remarkably, so let us con-
sider only the pairwise interactions between atoms which are the first neighbours.
Assuming that some, although unknown, kind of order in the temperature of 0oK in
the alloy exists [21], let us denote by α (or β) those sites of the lattice which, at the
temperature of 0oK are occupied by A atoms (or B atoms, respectively). We have

x = FA = Fα, FB = Fβ = 1 − x(30)

which means that the number of sites equals the number of atoms. The concentra-
tions of atoms in layers, long-range order parameters, the number of pairs of nearest
neighbours, and entropy can be calculated according to the corresponding formulae
(11)-(17) for binary alloys. The only problem is that we cannot determine the co-
efficients rj

στ , σ, τ ∈ {α, β} appearing in the formula (14). We shall, however, find
their average value in the lattice.

The dependence between the coefficients rj
αα, rj

αβ, rj
βα, rj

ββ. We have

rj
αα + rj

αβ = rj
βα + rj

ββ = Kj,(31)

where Kj is the lattice constant, here: K0 = 6 (i.e. every site has 6 neighbours in the
same layer), K1 = 3 (i.e. every site has 3 neighbours in the next layer) (cf. Fig. 2).
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z

t

Fig. 4: AB3 fcc alloy of (111) surface orientation, first and second neighbours included.
Concentrations of A atoms in layers 1-6 and long-range order parameters in dependence of
temperature. The graphs were obtained for two different potentials in question: the graphs
on the left refer to the Morse potential, the graphs on the right refer to the Lennard-Jones
potential.

Let us consider all the ordered pairs (αk, σl), where αk denotes an arbitrary (one
of NFα sites) α site in i-th layer, while σl denotes one of N sites in i+ j-th layer (or
i−j-th layer) and such that, the between αk and σl is equal to the distance of nearest
neighbours. The number of all the pairs (αk, σl) in one layer is equal to NFαK

j .
The same number can be obtained in a different way, namely, by considering that
there are

NFαr
j
αα of those pairs in which σl is an α site and

NFβr
j
βα of those pairs in which σl is a β site.

Therefore we have

NFαK
j = NFαr

j
αα +NFβr

j
βα,(32)

and hence

rj
βα =

Fα

Fβ

(
Kj − rj

αα

)
=

x

1 − x

(
Kj − rj

αα

)
.(33)
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zC

zA,
zB

t

Fig. 5: ABC2 bcc alloy of (111) surface orientation, first and second neighbours included.
Concentrations of C atoms in layers 1-3 (top graphs), concentrations of A and B atoms in
layers 1-3 (middle graphs) and long-range order parameters in dependence of temperature
(lowest graphs). The graphs were obtained for two different potentials in question: the
graphs on the left refer to the Morse potential, the graphs on the right refer to the Lennard-
Jones potential.

Similarly, considering the number of all the pairs (βk, σl) we obtain

NFβK
j = NFαr

j
αβ +NFβr

j
ββ,(34)

and hence

rj
ββ = Kj − Fα

Fβ
rj
αβ = Kj − x

1 − x
rj
αβ =

1 − 2x
1 − x

Kj +
x

1 − x
rj
αα.(35)

From the above follows that in the alloy AxB1−x, if the value of rj
αα is known, then

the other coefficients rj
στ can be calculated from (31), (33), (35).



86 M. Nowak-Kȩpczyk

α-site in i-th layer

β-site in i-th layer

α-site in i + 1-st layer

β-site in i + 1-st layer

Fig. 6: One layer together with its neighbouring layer structure in the case of A0.5B0.5 fcc
alloy with (111) surface orientation.

Case 1. x < 0.25 . Since the atoms A and B have bigger interaction energy (ac-
cording to (25)) the alloy has tendency to order, so the A atoms are more likely to
spread in the sample than to aggregate in one place. As there are fewer A atoms
now than in the alloy AB3 fcc considered before, we can assume that, like in AB3

fcc alloy, every α site is surrounded only by β sites, so we have

r0αα = 0, r1αα = 0,(36)

and the other coefficients follow from (31), (33), (35).

Case 2. 0.25 < x ≤ 0.5 . As it can be seen in Fig. 3, in the case of AB3 alloy all the
first neighbours of an atom in α-site are in β-sites, but all its second neighbours are
in α-sites. If the number of α sites grows bigger than 25%, which can be visualized
as removing some β-sites and replacing them with α-sites, then all these ’new’ α
sites must become the first neighbours. So it is no longer possible to surround every
α site with only β sites.

Let us consider a lattice consisting of 50% of α sites and 50% of β sites. We have
the average of r0αα = 2, r1αα = 1 (sf. Fig. 6).

Denote by rj
αα(x) the mean value of rj

αα when the concentration of A atoms in
the sample is equal to x, 0.25 < x ≤ 0.5 . We have r0αα(0.25) = 0, r0αα(0.5) = 2.
Assuming the dependence between the A atoms concentration in the sample, x, and
the values of r0αα(x) can be modeled by a linear function, we obtain that

r0αα(x) = 8x− 2.(37)

Similarly, if we consider r1αα(0.25) = 0, r1αα(0.5) = 1, we obtain

r1αα(x) = 4x− 1.(38)

The other coefficients follow from (31), (33), (35).
The values of rj

στ coefficients calculated for different values of A atoms concen-
trations in the sample are given in Table 1.
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x r0αα r0αβ r0βα r0ββ r1αα r1αβ r1βα r1ββ

0.05 0 6 0.32 5.68 0 3 0.16 2.84
0.1 0 6 0.67 5.33 0 3 0.33 2.67
0.15 0 6 1.06 4.94 0 3 0.53 2.47
0.2 0 6 1.5 4.5 0 3 0.75 2.25
0.25 0 6 2 4 0 3 1 2
0.3 0.4 5.6 2.4 3.6 0.2 2.8 1.2 1.8
0.4 1.2 4.8 3.2 2.8 0.6 2.4 1.6 1.4
0.5 2 4 4 2 1 2 2 1

Table 1. The values of rj
στ coefficients for different values of A atoms

concentrations in the AxB1−x alloy with (111) surface orientation.

The calculations have been made for the alloys AxB1−x with the following A

atoms concentrations in the sample:

x = 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%.

The concentrations of A artoms in 5 layers and the corresponding long-range order
parameters are given in Figs. 7 and 8.

It can be observed in all the graphs of long-range order parameters that their
values suddenly drop to zero at certain temperature and it can be noticed that the
smaller the A atoms concentration in the sample, the lower the temperature of the
drop of the long range order parameters. Moreover, all the alloys, apart form the
50% alloy, show the effect of surface segregation which is realized by the diminished
A atoms concentrations in the outer layers. In the 50% alloy there is no segregation
effect, but the order transition can be observed, like in all other alloys.

In all the alloys considered in the whole range of temperatures we have

zA(1) = zA(5) ≤ zA(3) ≤ zA(2) = zA(4),(39)

and the equality is obtained at zero degrees temperature up till some other value of
it.

The alloys of different A atoms concentrations differ also with respect to maximal
difference in atoms concentrations in layers. The biggest difference can be observed
in 5% alloy where we have

z1(A) = z5(A) = 0%,

whereas in the second and fourth layers we have

z2(A) = z4(A) = 9.5%.

With the rise A atoms concentration in the alloy, the maximal difference diminishes,
up till vanishing completely in the alloy of 50% concentration of A atoms.
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(a)

(b)

(c)

(d)

Fig. 7: Concentrations of A atoms in layers (graphs on the left) and long range order
parameters (graphs on the right) in AxB1−x fcc alloy with (111) surface orientation and
with different A atoms concentrations, x, in the alloys: (a) x = 0.05, (b) x = 0.1, (c)
x = 0.15, (d) x = 0.20.
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(a)

(b)

(c)

(d)

Fig. 8: Concentrations of A atoms in layers (graphs on the left) and long range order
parameters (graphs on the right) in AxB1−x fcc alloy with (111) surface orientation and
with different A atoms concentrations, x, in the alloys: (a) x = 0.25, (b) x = 0.3, (c)
x = 0.4, (d) x = 0.5.
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CIENKIE WARSTWY STOPU PODWÓJNEGO A POTENCJA�LY
LENNARDA-JONESA I MORSE’A
NOTATKA O STOPACH PODWÓJNYCH O DOWOLNEJ KONCENTRACJI ATOMÓW

S t r e s z c z e n i e
Rozważane sa̧ cienkie warstwy stopu podwójnego AB3 o orientacji (111) oraz stopu

potrójnego ABC2 bcc o orientacji (111). W pracy pos�lugujȩ siȩ modelem Valenty-Sukien-
nickiego dla stopów potrójnych. W tym modelu stop podwójny może być traktowany jako
szczególny (zdegenerowany) przypadek stopu potrójnego. Wartości koncentracji atomów w
warstwach oraz wartości parametrów dalekiego zasiȩgu sa̧ wyznaczane numerycznie. Wed�lug
obliczeń, zarówno koncentracje atomów w warstwach jak i wartości parametrów dalekiego
zasiȩgu dla warstw wewnȩtrznych i zewnȩtrznych różnia̧ siȩ w szerokim zakresie temperatur.

Celem pracy jest porównać rezultaty numeryczne otrzymane, gdy we wzorze na
energiȩ swobodna̧ uk�ladu uwzglȩdniamy potencja�l Morse’a z rezultatami otrzymanymi
dla potencja�lu Lennarda-Jonesa. W drugiej czȩści pracy wykonujȩ obliczenia koncentracji
atomów w warstwach oraz parametrów dalekiego zasiȩgu w przypadku stopów AxB1−x fcc
o dowolnej koncentracji atomów A w próbce.
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DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE �LÓDŹ
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FINSLER-GEOMETRICAL MODEL OF QUANTUM
ELECTRODYNAMICS II
PHYSICAL INTERPRETATION OF SOLENOIDAL AND NONSOLENOIDAL
CONNECTIONS ON THE CANONICAL PRINCIPAL FIBRE BUNDLES

Summary
In the first part of the paper we have analysed different physical demands showing the

importance of nonriemannian geometries in quantum electrodynamics. In this part, after
outlining the five-dimensional Ka�luża-Klein-like model, we study ferroelectric crystals in a
Finsler geometry including the sine-Gordon equation for the surface. Then, within the gen-
eralized Yang-Mills equations we distinguish and discuss their solenidal and nonsolenoidal
parts including, in the spirit of equipping the Finsler geometry with suitable nonlinear con-
nections, the connections corresponding to the Yang-Mills field vs. Yang-Mills field itself.
Next we consider the case of an arbitrary symmetry within the group SO(r + 1, s) and the
problem of simplifying the external field in terms of the metric and connection. We finish
with an example and an outlook of future perspectives.

10. A concept of the five-dimensional model
of nonlinear electrodynamics

In Sec. 1 of [I�L4] we have already announced Beil’s results [Be1, 2] about a relation-
ship between the Finsler and Ka�luża-Klein gauge theories. In a flat space without
the scalar field it is natural to consider the Ka�luża-Klein metric(

gα̂β̂

)
=
(
gμν +AμAν Aμ

Anu 1

)

with μ, ν = 1, 2, 3, 0. Kerner [K] had proposed the full Lagrangian

L = R + γ
(
Rα̂β̂γ̂δ̂R

α̂β̂γ̂δ̂ − 4Rα̂β̂R
α̂β̂ +R2

)
,
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including the Gauss-Bonnet term already mentioned in Sec. 1, with Y being a param-
eter characterizing the strength of nonlinearity. When expressed in four dimensions
in terms of the Maxwell tensor, it becomes

L = −1
4
FμνF

μν − 3
16
γ
[
(FμνF

μν)2 − 2FμλFνρF
μνFλρ

]
.

The equations of motion are

Fλρ|μ + Fρμ|λ + Fμλ|ρ,(61)

which correspond to the Bianchi identities.
The Lagrangian written in terms of the familiar fields E and B reads [KBG]:

L =
1
2
(
B2 − E2

)
+

3
2
γ (E · B)2

and the equations (61) may be rewritten as

divE = −3γB · grad(E ·B), rotB = ∂0E + 3γ [B∂0(E ·B) − E× grad(E · B)] .

In this approach, equivalent (cf. Sect. 1) to a simple Finsler-geometrical approach,
the density of charge and the current are created by non-linearity of the field:

ρ = −3γB · grad(E ·B), j = 3γ [B∂0(E · B) − E× grad(E · B)] .

The continuity equation reads ∂0ρ+ div j = 0 and the Poynting vector conserves its
usual form S = E× B. Yet, the energy density is modified:

E =
1
2
(
E2 + B2

)
+

3
2
γ (E · B)2

and the corresponding continuity equation reads ∂0E + div S = 0. One wave propa-
gates in a Maxwellian way; the other possible wave solution is delayed.

11. Ferroelectric crystals in a Finsler geometry

In the case of a chain of atoms in a crystal in the Hamiltonian derived we may dis-
tinguish the terms He, Hp, and Hep due to electronic vibrations, phonon vibrations,
and electron-phonon coupling, respectively:

He =
∑
λ,λ̃

tλ,λ̃C
+
λ Cλ +

1
2
UσCλ(σ)Cλ(σ)C

+
λ(−σ)Cλ(−σ) − μ

∑
C+

λ Cλ,

Hp =
1
2
M
∑

j

p2
j+

1
2
a
∑

j

(Rj+1 −Rj)2+. . . , Hep = I
∑

j

(Rj −Rj+1) (C+
λ Cλ+1),

where
λ = (ν, j,m, σ), λ+ 1 = (ν, j + 1,m, σ).

The expressions for He, Hp, and Hep are written in the Hubbard approximation
applied together with the pseudoharmonic approximation [G�LW2].

The equations of motion read

Ṗj = −(∂/∂Rj)〈H〉, Ṙj = (∂/∂Pj)〈H〉,
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where H = He + Hp + Hep and we take the averaged value 〈H〉 because of the
quantum statistical approach. Hence MR̈j = −(∂/∂R)〈H〉 and, consequently,

MR̈j = α(Rj+1 +Rj−1 − 2Rj) + . . . ∗ . . .+ I
∑
α

Φ∗
jα(Φj+1,σ − Φj−1,σ),(62)

where . . .∗ . . . denotes the terms related to the inhomogeneity of the system and the
last term expresses the coupling of the crystallographic lattice with the system of
electron. As in the quoted paper, the external force originates from the inhomogene-
ity of the phonon system, I and α are parameters, and σ stands for the fluctuation
distribution.

For describing the motion of electrons we rearrange the Dirac-Maxwell system to
an averaged Heisenberg-type equation:

i(d/dt)ΦCλ = [Cλ, H ]

with
Φλ = 〈0|Cλ|0〉, Φ∗

λ = 〈0|C+
λ |0〉,

and hence

i(d/dt)Φλ = μΦλ|Φλ(−σ)|2 − μΦλ + t [Φλ+1 + Φλ−1]

+I(Rj −Rj+1)Φλ+1 + I(Rj−1 −Rj)Φλ−1.(63)

When applying the continualized model of variables (the Lindner-Fedyanin method)
the equations (62) and (63) imply

Rj/a→ x(ξ, t), Rj±1/a→ x+ x′ +
1
2
x′′,

so that

Mẍ = −αx′′ + 2
I

a

∑
σ

∂

∂ξ
(ΦσΦ−σ),(64)

with x = x(ξ, t) and

iΦσ = TΦ′′
−σ + 2TΦ−σ − (2I)2

M(ω2 − ω2
0)

∑
σ′

Φ∗
σ′Φ−σ + U |Φ−σ|2Φσ − μΦσ,(65)

where ω2
0 = α/M.

At least the third and fourth terms on the right-hand side of (65) cause the
necessity of discussing the solitary waves in the context of the investigation of layers
near to the surface in anharmonic crystals. The appearance of an electronic soliton
is determined by the sign of the influence of vibrations according to the sign of
the coefficients U and −(2I)2/M(ω2 − ω0)2. By (64), the solution for vibrations
x = x(ξ, t) depends on the shape of solutions for Φσ and Φ−σ. We shall study the
soliton solutions of the equations (64) and (65) with the force (as in (64)). The
soliton equations have to be treated as equations of motion, i.e. as the Lagrange-
Euler equations in spite of the fact that the Lagragian concerned does not exist in
a finite-dimensional space even for the Korteweg-de Vries equations.
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Fortunately we have built the Finsler-geometrical model of quantum electrody-
namics, so that all the solitons are solutions of the equations of motion, i.e. of the
Lagrange-Euler equations:

∂

∂x

(
ut

∂

∂ux
L
)

= 0 with L = L(u, ut, ux), u = u(x, t)

(equation (4.2) in [�L5]). Then, in the case of ferroelectric crystals the results may
be compared with those of Pouget and Maugin [PM1, 2]. Our solutions will express
surface solitons if the maximum is attained on the surface of the crystal, i.e. at the
end of the chain of atoms (in the sense of construction given in [G�LW2], pp. 48–49).

Let us concentrate on the case of single solitons and one-wall motion in elastic
ferroelectrics in the presence of mechanical couplings. Then the equations (64) and
(65) describing the solitary waves become

Qutt = ĉ‖uxx, Qvtt − c⊥vxx = −eΘx cos 2Θ,

JΘtt −KΘxx = evx cos 2Θ + χ sin 2Θ;

cf. [PM1, 2], where the physical meaning of the parameter functions is given. The
quoted authors had shown, on the basis of continualized equations of the magne-
toelasticity for ferroelectric crystals, that Bloch walls in an infinite crystal and Néel
walls in a thin elastic film can be represented by “magnetoelastic” solitary waves.

In the first case the solitary waves are solutions of a simple sine-Gordon equation
(cf. [�L5], Sect. 4)

uxt = sinu.(66)

In the second case the magnetic-spin orientation remains nonlinearly coupled to the
elastic displacement polarized in the plane of the film. Therefore we study a nonlin-
early coupled system of a sine-Gordon equation. It is still better to study a double
sine-Gordon equation and two-wave equation. For such a system, Pouget and Maugin
had obtained the solitary-wave solutions in closed form. As it has been announced,
an important role in the staff is played by the double sine-Gordon equation

uxt = sinu− γ sin 2u,(67)

where γ is a real constant. If γ = 0, (67) reduces to (66). Equation (67) has one-
soliton solutions

u1 = −2 arctan[a sinh(x− ωt)], u2 = π − arctan[a sinh(x− ωt)],

where ω is a constant and

a = 1/(1 + 2γ).(68)

It is natural to ask: For which Lagrangians L in the sense of Finsler geometry, the
Dirac-Maxwell equations of motion are satisfied by u1 or/and u2? The answer is
given by [KL�L]:
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Proposition 1. For

L1(u, ux, ut) = utux

(
1 + tan2 1

2
u

)2/(
a2 + tan2 1

2
u

)
,

L2(u, ux, ut) = utux

(
1 + cot2

1
2
u

)2/(
a2 + cot2

1
2
u

)
,

as Lagrangians in the sense of Finsler geometry, the corresponding Dirac-Maxwell
equations of motion read

2utx + utux

(
tan

1
2
u

)(
2a2 − 1 + tan2 1

2
u

)/(
a2 + tan2 1

2
u

)
= 0(69)

and

2utx − utux

(
cot

1
2
u

)(
2a2 − 1 + cot2

1
2
u

)/(
a2 + cot2

1
2
u

)
= 0,(70)

respectively, while the functions u1 and u2 are special solutions of (69) and (70),
respectively.

We can see that for γ = 0, that is, by (68), for a = 1, the equations (69) and (70)
become

utux = −2utx cot
1
2
u(71)

and

utux = 2utx tan
1
2
u,(72)

respectively, so indeed the equation (72) is a counterpart of the sine-Gordon equation
in the Finsler geometry. Thus, thanks to the Finsler Lagrangian formalism, the
generalized Pouget-Maugin description of solitary waves in ferroelectric crystals has
directly been linked with basic symmetries of electron and nucleon systems. As
shown in [KL�L], by the Hurwitz pair theory (cf. [�L3], Sect. B2), the description can
be formulated in terms of Clifford hypercomplex analysis, and this is confirmed by
the results of R. G. Beil, already quoted in Sect. 1 of [I�L4] and in Sect. 10.

12. The Finsler-geometrical counterpart of the sine-Gordon
equation for the surface

For a surface problem we shall use Hurwitz pairs in the simplest, euclidean case [�L5],
Sect. 5.2. Following [KL�L] we are going to prove

Theorem 3. Let (V, S) be the two-dimensional (Euclidean) Hurwitz pair. Let further
F = {f1, . . . , fN} be a finite family of regular functions

fk : D ⊆ S → V, k = 1, . . . , N,
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defined with respect to the above Hurwitz pair: fk = fk
1e1 + fk

2e2, where (e1, e2) is
a basis of V . Then there exists a complex (N + 1) × (N + 1)-matrix PF such that

P 2
F = PF , P+

F = PF(73)

and

[PF ,ΔPF ] = 0 with Δ = DD̄ = (∂1)2 + (∂2)2.(74)

Explicitly, if Φ = (ϕ1, . . . , ϕN )T is the vector in C
N of holomorphic functions (in

the usual sense) ϕk = fk
1 + ifk

2, k = 1, . . . , N, then

PF =
1

1 + Φ+Φ

(
1 Φ+

Φ ΦΦ+

)
.(75)

Proof. To each family F = {f1, . . . , fN} of regular functions we can associate a
vector Φ = (ϕ1, . . . , ϕN )T , where ϕk = fk

1 + ifk
2, k + 1, . . . , N , are holomorphic

functions. This follows from the fact ([�LR1], Theorem 3) that Dfk = 0 if and only if
the vector Ψk(fk

1, fk
2)T satisfies the equation(

I2∂
1 − iσ2∂

2
)

Ψk = 0,(76)

where I2 is the unit 2 × 2-matrix and σ2 is the familiar second Pauli spin matrix;
[�L3], Sect. A1. Equation (76) is just equivalent to the system

∂1fk
1 = ∂2fk

2, ∂2fk
1 = −∂1fk

2.

Consider now the (N + 1) × (N + 1)-matrix PF given by (75). It is a projector or
the complex vector (1,Φ)T . Since Din and Zakrzewski [DZ] checked that PF satisfies
(74), the proof is completed.

Remark 1. There exists a hyperbolic counterpart of Theorem 3: [KL�L], p. 36.

Let us turn our attention to the equation (72). The known solution of the sine-
Gordon equation: the simple soliton solution and the double soliton solutions are
also solutions of (72). For a satisfactory description of the surface solitary waves we
need solutions of (72) which do not satisfy (66). Indeed, we have:

Proposition 2. The sine-Gordon equation (66) and its counterpart (72) in the Fins-
ler geometry are not equivalent. However, all known solutions of (66): the simple
soliton solution and the double solutions are also solutions of (72).

Proof. we shall verify that the function

v = 4 arctan [exp(t+ ax+ b)] ,

for suitably chosen constants a and b, is a solution of (72), but does not satisfy (66).
In fact, we check that

vt = 4 exp
(
t+ ax+ b)

/
[1 + exp 2(t+ ax+ b)]

)
,

vx = 4a exp (t+ ax+ b)
/

[1 + exp 2(t+ ax+ b)] .
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Hence the left-hand side of (72) equals

L = utux = 16u exp 2 (t+ ax+ b)
/

[1 + exp 2(t+ ax+ b)]2 .

On the other hand, we calculate:

vxt = 4a exp (t+ ax+ b) [1 − exp 2(t+ ax+ b)]
/

[1 + exp 2(t+ ax+ b)]2 .

Hence the right-hand side of (72) becomes

R = 2uxt tan
1
2
u

= 2 · 4a exp(t+ ax+ b)
1 − exp 2(t+ ax+ b)

[1 + exp 2(t+ ax+ b)]2
· 2 exp(t+ ax+ b)

[1 − exp 2(t+ ax+ b)]

= 16a exp 2(t+ ax+ b)
/

[1 + exp 2(t+ ax+ b)]2 .

Hence L = R and v is a solution of (72) for any a and b. If v were a solution of
(66), it would have to satisfy it at every point (x, t). At (0, 0) we have v(0, 0) =
4 arctan(exp b). Setting b = ln tan 1

8π, we get

v(0, 0) = 4 arctan
(

tan
1
8
π

)
=

1
2
π, sin v(0, 0) = sin

1
2
π = 1.(77)

Yet, the left-hand side of (66) is equal to

vxt(0, 0) = 4a
(

tan
1
8
π

)(
1 − tan2 1

8
π

)(
1 + tan2 1

8
π

)2

and it can be quite arbitrary. For example, if we set

a =
1
2

(
1 + tan2 1

8
π

)2 / [(
tan

1
8
π

)(
1 − tan2 1

8
π

)]
,

then we get vxt(0, 0) = 2. We have arrived to a contradiction with (77), as desired.
The proof of the second statement of the proposition consists in straightforward

verification.

13. The solenoidal and nonsolenoidal parts of the generalized
Yang-Mills equations as observed on the canonical
principal fibre bundle

When transforming the Yang-Mills equations to a Finsler geometry it seems impor-
tant, from the physical point of view, following the classical analogies, to distinguish
the “solenoidal” and “nonsolenoidal” parts of those equations. Lemma 2 in [I�L4], es-
pecially the decomposition appearing in (35), suggests the relationship of the parts
distinguished with DivF )j and [Ak, F

jk], respectively (j = 1, 2, . . . , n); Lemma 3 in
[I�L4], especially the decomposition appearing in (43), suggests the relationship of the
parts distinguished with δF and 2Trg(A⊗G F ), respectively. However, if we look for
a suitable global decomposition of the final equation [I�L4] (48), the proper choice
is d(�GΩ2) for the “solenoidal” part and �GΩ2 ∧G ω for the “nonsolenoidal” part,
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where – as before – ∧G denotes the G-dependent wedge product operator. Indeed,
we have the following corollary to Theorem 2 in [I�L4] ([GK�L]):

Corollary 1. Under the hypotheses of Theorem 1, without assuming that A corre-
sponds to a stationary value of [I�L4] (47), the decomposition

D(�GΩ2) = d(�GΩ2) + �GΩ2 ∧G ω,(78)

where the both addends are well-defined global tensorial forms. An analogous state-
ment for the decomposition [I�L4] (53) is, in general, false.

Proof. We consider the global tensorial form D(�GΩ2). Without assuming that A
corresponds to a stationary value of [I�L4] (47), we can see by Theorem 2 or, more
exactly, by the relations [I�L4] (53) and [I�L4] (55), that the form in question is equiv-
alent to the left-hand side of [I�L4] (43) with F and A being locally expressed by
[I�L4] (56), where (er) and (e∗j ) are as in the proof of Theorem 2. The forms F and
A themselves have their values in the lie algebra G defined over co-ordinate neigh-
bourhood U of M# such that (π−1(U), π, U) is a trivial bundle (M# is as in [I�L4],
Theorem 2).

The first statement of the corollary is evident. When proving the second state-
ment, by [I�L4] (55) we need to verify if vanishing of the one-form Trg(A⊗GF ) depends
of the choice of local trivialization. Hence, consider another local trivialization over
U . The forms F and A are then transformed according to the formulae

F̃ = ĝ−1F ĝ and Ã = ĝ−1Aĝ + ĝ−1dĝ,

respectively, where ĝ : U → GL(m,R) or GL(m,C). Consequently,

Trg(Ã⊗G F̃ ) = Trg

[(
ĝ−1Aĝ + ĝ−1dĝ

)⊗G (ĝ−1F ĝ
]

= Trg

(
ĝ−1Aĝ ⊗G ĝ−1F ĝ

)
+ Trg

(
ĝ−1dĝ ⊗G ĝ−1F ĝ

)
= Trg

[
ĝ−1(A⊗G F )ĝ

]
+ Trg

{
ĝ−1

[
(dĝ)ĝ−1 ⊗G F

]
ĝ
}

= ĝ−1 [Trg(A⊗G F )] ĝ − ĝ−1
[
Trg(ĝdĝ−1 ⊗G F )

]
ĝ.

We conclude that the equation Trg(A ⊗G F ) = 0 is not invariant with respect to
local trivializations and this completes the proof.

By Theorem 2 in [I�L4], the global formulation of the generalized Yang-Mills prob-
lem, depending on an arbitrary metric g and an arbitrary non-abelian Lie group G,
involves in a natural way the bundle P (M#, G) of orthonormal frames of E, which
is equipped with the connection N0 induced by a given G-connection N# on E, cor-
responding to the G-vector field A. As noted in [I�L4], Sect. 1, especially when com-
menting the scheme (2) of the first named author, manipulations with connections
are of basic importance for the proposed approach to quantum electrodynamics.

We can go still further and consider a more general situation with P (M#, G)
being an arbitrary principal fibre bundle of E – a real or complex G-vector bundle
over M#, where G is an arbitrary compact subgroup of some SO(m) or SU(m).
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Then we can construct on E the canonical riemannian [hermitian] metric h (cf. e.g.
[W], p. 69) and consider the h-depending Hodge ∗-operator �G . Finally, passing to
a Finsler (in particular, Randers) metric can be done, in analogy to several previ-
ously given examples, by regarding the metric h a sort of Fisher’s information or
the (partial) metric of the associated Riemannian space (cf. e.g. [�L7], pp. 121 and
123, especially Theorem 2, and papers quoted there). The distinction between the
“solenoidal” and “nonsolenoidal” ports of the generalized Yang-Mills equation now
motivates, even purely mathematically, the following

Definition. A connection N# corresponding to a G-vector field is called solenoidal if
the corresponding connection matrix ω satisfies the condition

�GΩ2 ∧G ω = 0.(79)

Following [GKa�L] we give another motivation to our definition:

Lemma 4. Let ϕ be a horizontal tensorial two-form on the principal fibre bundle
P (M#, G), where M# is the base space and G is an arbitrary compact subgroup of
some SO(m) or SU(m). Then, for arbitrary fields X,Y, Z on P , we have

Dϕ(X,Y, Z) = dϕ(X,Y, Z) − 1
3
{[ϕ(X,Y ), ω(Z)]

+ [ϕ(Y, Z), ω(X)] + [ϕ(Z,X), ω(Y )]} .(80)

Proof. Obviously, every vector of P is the sum of the horizontal component and
the vertical component. The both sides of (80) are bilinear and skew-symmetric in
X,Y, Z, so it is enough to verify the equality in the following special cases:
(i) X,Y, Z are vertical,
(ii) X,Y, Z are horizontal,
(iii) X and Y are vertical, and Z is horizontal,
(iv) X and Y are horizontal, and Z is vertical.
By the definition of covariant differentiation and an obvious relation

dϕ(X,Y, Z) =
1
3

[Xϕ(Y, Z) + Y ϕ(Z,X) + Zϕ(X,Y )]

= [ϕ([X,Y ], Z) + ϕ([Y, Z], X) + ϕ([Z,X ], Y )](81)

the proof in the cases (i)–(iii) is immediate.
In the remaining case (iv), without any loss of generality, we may assume that X

and Y are horizontal lifts and Z = A∗ is the fundamental vector field corresponding
to some A and G, where G is the Lie algebra corresponding to G. In consequence
the left-hand side of (81) is zero, whereas the right-hand side equals

1
3
A∗ϕ(X,Y ) − ϕ ([Y,A∗], X) − ϕ ([A∗, X ], Y ) − 1

3
[ϕ(X,Y ), ω(A∗)] .

Yet, X and Y are Ra-invariant as horizontal lifts with

R∗
aϕ = ada−1ϕ for a ∈ G.(82)
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Consider the one-parameter subgroup {Gt} of G generated by A. Hence

[X,A∗] = lim
t→0+

1
t

[Rat(X) −X ](83)

and thus

A∗
uϕ(X,Y ) = lim

t→0+

1
t

[ϕuat(X,Y ) − ϕu(X,Y )]

= lim
t→0+

1
t

[
(R∗

at
ϕ)u(X,Y ) − ϕu(X,Y )

]
= lim

t→0+

1
t

[
ada−1

t ϕu(X,Y ) − ϕu(X,Y )
]

= − [A,ϕu(X,Y )] .

Hence, in our case (81) yields

0 =
1
3
A∗ϕ(X,Y ) − 1

3
[ϕ(X,Y ), ω(A∗)] ,

so, by (82) and the Ra-invariance of X and Y , we conclude that

ϕ ([Y,A∗], X) = 0 and ϕ ([A∗, X ], Y ) = 0.

The lemma is proved.

Theorem 4. A connection N# corresponding to a G-vector field, where G is the Lie
algebra of a semi-simple Lie group G, is solenoidal if and only if

Ω2 ≡ Dω = 0.(84)

If, in particular, the principal fibre bundle P (M#, G), where M# is the base space, is
not trivial and admits a solenoidal connection, then M# is multiply connected.

Proof. The sufficiency is evident. Since ω is solenoidal, then, by (49), [�GΩ(X,Y ), A]
= 0 for every A of G and horizontal fields X and Y on P . Yet, G is semi-simple,
and this means that �GΩ(X,Y ) = 0 for all horizontal fields X and Y on P . Hence,
by the definition of the Hodge ∗-operator �G we obtain (84), as desired.

In addition to another motivation to the definition of a solenoidal G-vector field,
Theorem 4 motivates in an elegant way the corresponding assumption of multiple
connectivity made in earlier papers by the second named author and L. Wojtczak
[�LW1, 2, �L1], as well as by several other authors like Misner and Wheeler [MiW],
Dirac [D], and Sakharov [Sa]. The interpretation of Theorem 4 confirms also phys-
ical conclusions presented in the quoted papers. In particular, by the above results
the assumption about the multiple connectivity of the base space M#, treated as
the space of the particle, is not arbitrary, but results in a rigorous way from the
assumption of non-triviality of the principal fibre bundle P (M#, G) [GH].

Furthermore, the possibility of obtaining the Yang-Mills equations, reduced to a
form equivalent to the Maxwell equations appearing in some class of metrics, shows
that the variety of physical fields can be treated as a result of geometry while their
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sources are of the same nature by physical principles [Hu]. Theorem 4 elucidates also
the problem due to the second named author [�L2] of replacing a given Yang-Mills
field, in general with currents, by a G-vector field in a different curved manifold, by
way of including current in the geometry, so that the field becomes Maxwell-like. This
way of thinking perfectly agrees with the scheme [I�L4] (2) of modifying properly a
Finsler, in particular Randers metric and some nonlinear connection. For instructive
example and comments we also refer to [�LKW, K�LW].

14. Connections corresponding to the Yang-Mills field
vs. the Yang-Mills field itself

Following our observation after [�L6] in Sect. 13, we concentrate now on a p-dimension-
al compact orientable Riemannian manifoldMe with metric ge and on a p-dimension-
al compact orientable pseudoriemannian manifoldMh with metric gh. For the scheme
[I�L2] (2) of the first of us it is important to concentrate on a sort of Fisher’s informa-
tion: ge or gh, or on the associated Riemannian space Me or pseudoriemannian space
Mh. For k = e and k = h, let Ek = (Ek, πk,Mk) be a real or complex Gk-vector
bundle over the base space Mk, where Ek denotes the bundle space, πk : Ek → Mk

is the projection and Gk an arbitrary subgroup of SO(rk +1, sk) with rk +1+sk = p,
SO(m), or SU(m). Further, suppose that

p = 8�+ 4, where � = 0, 1, 2, . . . .

In analogy to [�LR2], Sect. 5, we can introduce the field of tetrads: If

zk = (za
k) and ζk(zk) = (ζa

k )(zk)

then the field of tetrads λk can locally be expressed by the relations

λk =
∑

α

(∂/∂ζα
k )λα

ka.

The (pseudo)riemannian tensor of Ek, i.e. the (pseudo)riemannian metric of Mk,
is locally given by

gk
ab =

∑
α

∑
β

λα
kaλ

β
kbη

k
αβ

where ηk is the metric of the tangent space. Now, consider the pair (Ek, Vk) such
that at every point z of Mk its tangent space at z forms, together with Vk, a
(psudo)Euclidean Hurwitz pair; cf. [�L5], Sect. 5.2. Then (Ek, Vk) is called a (pseudo)
riemannian Hurwitz pair; cf. [A�LR]. The concept can still be generalized by replac-
ing Vk with a (psudo)riemannian or symplectic manifold whose tangent bundle {Vk}
consists of the spaces understood as before.

Let us turn, in particular, our attention to the case Gk = SU(2) with Gk = su(2)
denoting the corresponding Lie algebra. We extend the definition of a Yang-Mills
field in a natural way: it is any su(2)-valued vector field A = (Aα), α = 1, . . . , p, in
an open set U in R

p [A�L]. Take the bundle
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Pk = Pk(Mk, Gk)

of orthonormal frames of Mk, endowed with the connection Nk
0 induced by a given

connection Nk
# on Mk, corresponding to a Gk-vector field Ak on Mk. Denote by ωk

and Ω2
k the connection matrix and curvature form corresponding to Ak, respectively.

Let Dk stand for the covariant derivative operator related to Nk
0 , �gk for the gk-

dependent Hadge ∗-operator, and

�Gk : AqP k → Ap−qPk,

where ArPk is the modulus of horizontal r-forms on Pk, of the type adGk. We have
[�LKS]:

Theorem 5. Consider a duality (cf. [I�L1], Sect. 5) of the Yang-Mills generation of
Hurwitz pairs, i.e. take into account one of the following configurations listed in
Table 1 and in Table 2, where � denotes the duality in question, and κ stands for
the matrix determining the scalar product in Vk:

(f1, f2)Vk
= f1κf

T
2 .

In order to explain the special values of κ in the tables, set

Cα = iγαCt, t fixed, t ∈ {1, . . . , p}, α �= t;

Cα =
[
c
jα

]
,

∑
α

∑
j

c
jαa
αf j

k = (a ◦ fk)


for � = 1, . . . , dimRVk; k = e and k = h,

where ◦ denotes the multiplication in the Hurwitz pair (Ek, Vk), consider the sequence
of matrices

γ̃α = γα, α = 1, . . . , r; γ̂β = γr+β , β = 1, . . . , s,

and, further, the real matrices

A = (−i)rγ̃1γ̃2 . . . γ̃r, B = (−i)sγ̂1γ̂2 . . . γ̂s.

If r = −1, 0, we set A = In (the n × n-unit matrix), if s = 0, we set B = In.
Hereafter � = 0, 1, 2, . . .

Tab. 1. Configurations of the Yang-Mills generation

re + 1
= 8� + 4

se = 0 κe = A � rk + 1 = 1 sk = 8� + 3 κk = iAγ1

re + 1
= 8� + 4

se = 0 κe = B � rk + 1 = 1 sk = 8� + 3 κk = iBγ1

re + 1 = 0 se = 8� + 4 κe = A � rk + 1
= B� + 3

sk = 1 κk = iAγ2

re + 1 = 0 se = 8� + 4 κe = B � rk + 1
= 8� + 3

sk = 1 κk = iBγ2
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Tab. 2. Configurations of the Yang-Mills generation (another presentation)

(8�+ 4, 0; A) � (1, 8�+ 3; iAγ1)
��

1, 8�+ 3; iBγ1) � (8�+ 4, 0; B)

8�+ 3, 1; iAγ2) � (0, 8�+ 4; A)
��

(0, 8�+ 4; B) � (8�+ 3, 1; iBγ2)

For k = e and k = h, let Mk be a Gk-vector bundle as specified before. Then

Dk

(
�GkΩ2

k

)
= dk

(
�GkΩ2

k

)
+ �Gk Ω2

k ∧Gk ωk,(85)

where the both addends are well-defined global tensorial forms with ∧Gk being the
Gk-dependent wedge product operator. Moreover, a connection Nk

# corresponding to
Ak is solenoidal, that is the second addend in (85) equals zero, if and only if

Ω2
k ≡ Dkωk = 0.

If, in particular, the principal fibre bundle Pk(Mk, Gk), where Mk is the base space,
is not trivial and admits a solenoidal connection, then Mk is multiply connected.

Proof. Consider a global tensorial form Dk(�GkΩ2
k. In local frame, if xa is a co-

ordinate system in a co-ordinate neighbourhood of Mk, let

F = dkAk +Ak ∧Gk Ak with Ak =
∑
α

Ak
αdx

α
k , (Ak

α) = Ak.

Since Nk
# is a Gk-connection corresponding to a Gk-vector field Ak of class C∞ on

Mk, then

δgkFk + 2Trgk (Ak ⊗Gk Fk) = 0, where δgk = ∗gkd∗gk ,

and ⊗Gk denotes the Gk -dependent tensor product operator; here

Fk = F k
αβdkx

α
k ∧Gk dkx

β
k with F k

αβ = ∂k
αA

k
β − ∂k

βA
k
α + [Ak

α, A
k
β ].

Yet, we have

∗gkσ∗
kDk

(
�GkΩ2

k

)
= δgkFk + ∗gk

(
Ak ∧Gk ∗gkF k

)
= 2Tr (Ak ⊗Gk Fk) ,

where σk is a local cross-section of Pk(Mk, Gk) : σ∗
kΩ2

k = Fk and σ∗
kωk = Ak; cf.

[BLS] and [I�L4], formulae (54) and (55). Consequently,

Dk

(
�Gk Ω2

k

)
= δgkFk + 2Trgk (Ak ⊗Gk Fk) ,

so we have proved (85). The second statement is a minor modification of Theorem 4.
In order to realize the programme [I�L4] (2) of the first of us, we have still to

deform the Gk and Gk-structures and therefore to go outside of SU(2) and su(2).
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15. The case of an arbitrary symmetry within SO(r + 1, s)

We make two simple, but important observations; cf. [Bl, Bo, CJ], [A�L], pp. 45–46,
and [W], pp. 69 and 78:

Remark 2. Theorem 5 extends for an arbitrary compact subgroup of SO(rk + 1, sk),
SO(m) or SU(m).

Remark 3. (i) Suppose that Eh = (Eh, πh,Mh) is a real Gk-vector bundle over Mh

and Nh is a given Gh-invariant connection corresponding to a Gh-vector field, where
Gh is an arbitrary compact subgroup of SO(rh + 1, sh) or SO(m). Let Uh = Uh

j ,
j ∈ Jh, be a covering of Mh with local frames over Uj such that the correspond-
ing transition matrices have their values in Gh. Then on Eh there exists a unique
remannian metric ge such that every above described system of local frames(

εμ
hj

)
, μ = 1, . . . ,m with

(
πh ◦ εμ

hj

)
= idUh

j
, j ∈ Jh, m = dimEh,(86)

satisfies the conditions

ge
(
ελ

hj, ε
μ
hj

)
= δλμ (the Kronecker symbol), λ, μ = 1, . . . ,m.(87)

The metric ge satisfies the differential equation

dge(s, t) = ge(Nhs, t) + ge(s,Nht), s, t ∈ Γh(EhMh),(88)

with Γh(Eh,Mh) being the modulus of cross-sections of Eh over Mh. Therefore the
metric ge determines a class of real G-vector bundles Me and Ge-invariant connec-
tions Ne with Me dual to Mh in the sense of Theorem 5.

(ii) Conversely, for every riemannian metric ge of Ee in a Ge-vector bundle Ee =
(Ee, πe,Me) on Ee there exists a unique Gh-structure determined as the reductions
of the bundle of orthonormal bases for Eh. This determines a class of Gk-invariant
connections Nh corresponding to the Gh-vector fields and, as a consequence, a class
of real Gh-vector bundles Mh with Mh dual to Me in the sense of Theorem 5. The
whole remark is still correct if we interchange the members of one or more pairs of
notations and adjectives as listed in Table 3.

Tab. 3. Admissible pairwise alterations in Remark 3

Allowed ↓ interchange
indices e together indices h together

with ←→ with
the adjectives “riemannian” the adjectives “pseudoriemannian”

SO(rk + 1, sk) or SO(m) ←→ SU(m)

real ←→ complex

“riemannian” or “pseudoriemannian” ←→ hermitian

orthonormal ←→ unitary
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It is unknown under which conditions, starting with a flat space-time Mh, we can
arrive at a curved Riemannian manifold Me with solenoidal connection Ne.

16. Simplifying the external field in terms of the metric
and connection

We are prepared to prove now, after [�LKS], the theorem on simplifying the external
field in terms of the metric and connection. This is crucial for realizing the scheme
[I�L4] (2) of the first of us, aiming at simplifying deformation of the external field:

the potential V replaced by V# (notation as in the quoted formula) and
replacing this by a more sophisticated, deformed geometry:

topological structure of the space M0 replaced by M# (e.g. multiply
connected), metric F0 replaced by F#; connection N or NC replaced by
N#.

We remark that, because of the already quoted (at least in Sect. 13, before giving
the definition of a solenoidal connection) ideas of passing from M0 to an analogue
of Fischer’s information or to the associated Riemannian space, as well as because
of Remark 3 giving a procedure of passing from the h-case to the e-case, we are
concentrating on the riemannian metric ge only.

In the case of external fields, according to their symmetries, the corresponding
generalized Yang-Mills equation Dk(�Gk Ω2

k) = 0, according to (85), has to contain
the term �Gk Ω2

k ∧Gk ωk �= 0, k = e or k = h. Consider the resolution

�GkΩ2
k ∧Gk ω =

∑



∑
α

R
α
h σh


 dx
α
h with Ω2

h =
∑




∑
α

∑
β

F 
αβ
h σh


 dx
α
hdx

β
h

and ωh =
∑




∑
α

A

hασ

h

 dx

α
h , � = 1, . . . , α− 1,

where (xα) is a local co-ordinate system in Sh. In terms of the Pauli-type matrices
σα is related in a known way to the generators of the Clifford algebra Cl(r − 1, s),
r = re, s = se. Then R
α

h appear to be complex-valued functionals depending, in
general on all F 
αβ

h , A

hα, and the pseudoriemannian metric gk. These functionals

are determined by the relations [σh
j , σ

h
j′ ] = σh


 ] = σh

 with distinct j, j′, �. Hence we

deduce the appearance of the current j = �hAh �= 0 with the usual meaning of �.
Clearly, DivhAh = 0 and DiveAe = 0. Therefore we have proved [�LKS]:

Theorem 6. Consider a pair of dual vector bundles

Ek = (Ek, πk,Mk) , k = e and k = h,

constructed in Remark 3. Suppose that �eAe = 0. Then there exists on Eh a unique
metric ge such that:
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(i) every system of local frames (86), over a member of a covering of Mh with the
corresponding transition matrices having their values in Gk, satisfies the conditions
(87);

(ii) ge satisfies the differential equation (88), where Γh(Eh,Mh) stands for the
modulus of cross-sections of Eh over Mh. Moreover, ge, Ae and Ah satisfy the dif-
ferential equations

de

(
�GeΩ2

e

)
= 0, diveAe = 0, and Dh

(
�GeΩ2

e

)
= 0, DiveAh = 0(89)

together with �hAh = j, where j is of class C∞(Mh). If the correspondence of A

e

and A

h, � ∈ Ih (cf. [RR] and [GrH], pp. 282–297) is known, the equations

�eAe = 0 and �hA


h(j) = j(90)

form, together with (89), a self-consistent system for determining j in Mh so that the
vector bundle Eh admits its dual Ee with a Ge-invariant connection Ne corresponding
to Ae.

Therefore we conclude:

Corollary 2. Under suitable conditions we can replace the initial field Ah with cur-
rents by a fictitious field Ae without them, compensating this by a sitable deformation
of the vector bundle Eh to Ee, especially the metric gh to ge; cf. [�LW1, 2, �L1, �LKW].

17. The Einstein centrifuge

Consider a frame of reference which steadily rotates with the angular speed ω in
the Minkowski space-time round the x3-axis. In the cylinder co-ordinate system
(θ, ρ, ϕ, ζ) of the moving frame we obtain the proper arc length element

ds2 = − [1 − (ω/c)2ρ2
]
dθ2 + 2ωρ2dϕdθ + dρ2 + ρ2dϕ2 + dζ2;

cf. e.g. [LL], Sect. 89. Hence it seems natural to take as a relatively simple example
the metric

gh =
(
gh

αβ

)
=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1 + (ω/c)2(x2 + y2)

⎞
⎟⎟⎠

with (t, x, y, z) as the co-ordinates. Consequently, the equation �hAh = 0 becomes

(ω/c)2

1 − (ω/c)2(x2 + Y 2)

[
(x2 + y2)

∂2

∂(ct)2
Ae

α + x
∂

∂x
Ae

α + y
∂

∂y
Ae

α

]
= jα, α = 1, 2, 3.

With

Ae
α =

1
4π

∫
Mh

1
|r − r′|jα(r′, xα

h)d3r′,
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we finally obtain

(ω/c)2

1 − (ω/c)2(x2 + y2)

⎧⎨
⎩(x2 + y2)

∫
Mh

∂2

∂(ct)2
jα(r′, xα)
|r − r′| d2r′

− 1
[1 − (ω/c)2(x2 + y2)]2

⎡
⎣x ∫

Mh

∂

∂x

jα(r′, xα)
|r − r′| d3r′ + y

∫
Mh

∂

∂y

jα(r′, xα)
|r − r′| d3r′

⎤
⎦
⎫⎬
⎭

= 4πjα.

18. Physical conclusions

We conclude that the outlined Finsler-geometrical model of quantum electrodynam-
ics is quite close to that for thermodynamics [�L6] and is strongly motivated by the
fact that, in general, we deal at the same time with more than one type of field and
more than one type of external potential. Because of the ideas of Beil [Be1, 2] and
Kerner [K, KBG], the model is also quite close to the five-dimensional approach,
Ka�luża-Klein theories, Clifford analysis by Hurwitz pairs, involving the need of soli-
tons and fractals. One can see this in our study of ferroelectric crystals in a Finsler
geometry and in the Finsler-geometrical counterpart of the sine-Gordon equation for
the surface.

As demanded in the introduction, the model is directed to open and dissipative
systems. Also, following the scheme [I�L4] (2), we were looking for replacing of com-
plicated potentials by more sophisticated metrics and nonlinear connections, that
is, including an important part of external fields as an intrinsic part of the electro-
dynamical geometry constructed. Since in several cases, because of the concepts of
Fisher’s information and associated Riemannian space (cf. Sect. 13), it was sufficient
to consider a Riemannian or pseudoriemannian metric, starting from [I�L4] Sect. 2,
we have discussed a generalized Dirac-Maxwell system, a useful complex-analytical
approach related with establishing convolution equations, and then generalizing the
staff to Yang-Mills systems in the presence of an external field. This included the case
of an arbitrary symmetry within the groups SO(m) or SU(m), the global system, an
SU(2)-based non-abelian generalization, and a generalization of the Lagrangian and
its embedding in the electroweak model.

The distinction between solenoidal and nonsolenoidal parts of the generalized
Yang-Mills equation (Sect. 13) led us to an important conclusion (Theorem 4) that if
the principal fibre bundle involved is not trivial and admits a solenoidal connection,
then the base space of the bundle is multiply connected. This corresponds perfectly
to the fundamental papers by Misner and Wheeler [MiW], Dirac [D], and Sakharov
[Sa], whose concept relied upon an assumption of multiple connectivity of the space
in question. Because of the basic demand expressed in the initial scheme [I�L4] (2),
a special section is devoted to the Yang-Mills field vs. the Yang-Mills field itself,
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stressing the duality between the Yang-Mills generation (of Hurwitz pairs) as seen
by an observer (the hyperbolic cases) and as related to the centre of the system
(the elliptic cases); in other words: the duality between the Yang-Mills generation as
related to the space of observation and as related to the space associated with the
centre of the system.

A study of arbitrary symmetries within the groups SO(r + 1, s) allowed us to
elaborate a procedure of transforming more complicated hyperbolic systems to sim-
pler elliptic systems. The related conditions enabling a simplification of the external
field in terms of the metric and nonlinear connection were expressed in Theorem 6.
Its physical content was formulated in Corrolary2. In other words it says that un-
der suitable conditions we can replace the initial field Ah with currents, related to
the space of observations, by a fictitious field Ae without them, related to the space
associated with the centre of the system, compensating this by suitable deformations
of the metric and nonlinear connection.

Going deeper, we may explain the magnetic moment of elementary objects in
our theory by a suitable choice of one pseudo-riemannian manifold – the space of
observations and two general Riemannian manifolds – the spaces of the particle
connected with the external electromagnetic and nuclear fields, respectively [�LW1,
Wi1–3, Bu, Sa], completed by suitable Finsler structures and nonlinear connections.
By a general Riemannian manifold we understand a Riemannian manifold whose
associated tensor field is allowed to be degenerate. In this way the mass of a particle
as well as its electromagnetic and even nuclear properties are determined by means
as manifolds and mappings between the corresponding Hilbert spaces. A nuclear
reaction is then to be interpreted as a mapping between the corresponding pseudo-
riemannian manifolds and the associated Riemannian manifolds.

The proposal in question is competitive to the quantum field theory and presents
a different way of describing the properties of physical objects. As already noticed,
it is not the first trial in this direction; cf. [D, Wi1, 2, Bu, Sa]. The distinction
between the space of observations and the space of the particle is in fact motivated
by Dirac’s considerations [D], but it seems that the paper [�LW1] as well as the present
constructions permit to include effectively electromagnetic and nuclear interactions.

As far as elementary particles are concerned, a further step is related with an
almost complex manifold approach [�LW2] which leads to relations between the cur-
vature form of an almost complex manifolds, accounting for the symmetry classifi-
cation schemes within the frame of principal fibre bundles, and a curved Minkowski
spacetime via induced smooth mappings characterizing nuclear reactions of type

N + π 	 N,

where N is some nucleon and π the virtual π-meson of this reaction. Both approaches
follow the same main idea of Wheeler [Wh] developed in a different way by Sakharov
[Sa].

Following the papers [�LW1, 2] its natural continuation [�LKW] is dealing with the
construction of fields connected with particles and regarded as a deformation of the
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particle space, thus providing a natural continuation also of the paper [�LW3] (al-
ready referred to in [I�L4], Section 4), where a complex-analytical method of solving
the generalized Dirac-Maxwell system was proposed for a certain class of complex-
Riemannian metrics. In [�LKW] an explicit calculation based on linearization of the
spinor connections is given. By analogy to the general relativity, where the gravita-
tional field and the space curvature are tightly related, the appearance of a particle
determines the space geometry whose properties reflect the particle properties and
describe the fields produced by them.

As stressed by Asanov [As], Chapter 5, as soon as the Finslerian structure reflect-
ing the internal symmetry of a certain class of physical fields is found, we are able
to describe both the gravitational and Yang-Mills fields. When deriving the field
equations in the context of the gauge approach [I�L1], the Finslerian (in particular,
Randersian) technique offers a simple possibility of using the projection factors of
the indicatrix to construct a Lagrangian linear in a gauge strength tensor as is done
in the usual gravitational theory, whereas in the usual gauge approaches the simplest
gauge field Lagrangian is quadratic in the gauge tensor. Finslerian geometrization
of isotopic invariance is used.

Asanov clearly illustrates the relationship between the curvature tensor associ-
ated with a metric tensor and the Yang-Mills tensors. He concludes that there are no
serious difficulties in reinterpreting Finsler geometry in precise mathematical terms
as providing a geometrical basis for constructing theories for physical fields exhibit-
ing internal symmetries. The exposition involves the general idea of parametrical
representation of physical fields.

For further reading in this direction we recommend the monographs by Asanov
[As] and Manin [Ma1, 2] as well as important papers [To, BPZ].
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�Lódź 58 Sér. Rech. Déform. 56 (2009), 49–60.

[I�L4] —, —, Finsler-geometrical model of quantum electrodynamics I. External field vs.
Finsler geometry, ibid. 60 Sér. Rech. Déform. 60, no. 1 (2010), 155–174.
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[K�LS] Katarzyna Kȩdzia, J.�Lawrynowicz, and O. Suzuki, Supercomplex structures, surface
soliton equations, and quasicon formal mappings (a) Dep. de Mat. Centro de Investi-
gación y de Estudios Avanzados México Preprint no. 46 (1989), ii + 45 pp., (b) Ann.
Polon. Math. 55 (1991), 245–268.

[LL] L. D. Landau and E. M. Lifschitz, (a) Lehrbuch der theoretischen Physik. Band II.
Klassische Feldtheorie, 6th ed. [transl. from Russian], Akademie-Verlag, Berlin 1973;
(b) Course of Theoretical Physics, Vol. II . The Classical Theory of Fields [transl.
from Russian], Pergamon Press, London 1959.
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1982, Proceedings. Ed. by J. �Lawrynowicz (Lecture Notes in Mathematics 1093),
Springer, Berlin-Heidelberg 1983, pp. 488–490.

[�L3] J. �Lawrynowicz, Quaternions and fractals vs. Finslerian geometry. A. Quaternions,
noncommutativity, and C∗-algebras; B. Algebraic possibilities (quaternions, octo-
nions, sedenions); 1. Quaternion-based modifications of the Cayley-Dickson process,
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MODEL FINSLEROWSKO-GEOMETRYCZNY
ELEKTRODYNAMIKI KWANTOWEJ II
INTERPRETACJA FIZYCZNA KONEKSJI SOLENOIDALNYCH
I NIESOLENOIDALNYCH W KANONICZNYCH G�LÓWNYCH WIA̧ZKACH
W�LÓKNISTYCH

S t r e s z c z e n i e
W pierwszej czȩści pracy przeanalizowalísmy różne fizyczne oczekiwania wskazuja̧c na

znaczenie geometrii nieriemannowskich dla elektrodynamiki kwantowej. W tej czȩści, po
naszkicowaniu piȩciowymiarowego modelu typu Ka�luży-Kleina, rozważamy kryszta�ly ferro-
elektryczne w geometrii Finslera z uwzglȩdnieniem równania sinus-Gordona dla powierzch-
ni. Z kolei, w uogólnionych równaniach Yanga-Millsa, wyróżniamy i dyskutujemy ich soleno-
idalne i niesolenoidalne czȩści z uwzglȩdnieniem, w duchu wyposażenia geometrii Finslera
w stosowne koneksje nieliniowe, koneksji odpowiadaja̧cych polu Yanga-Millsa przeciwsta-
wionych samemu polu Yanga-Millsa. Nastȩpnie rozważamy przypadek dowolnej symetrii
w grupie SO(r+1, s) oraz zagadnienie uproszczenia pola zewnȩtrznego w terminach metryki
i koneksji. Pracȩ kończymy przyk�ladem i przegla̧dem perspektyw w przysz�lości.





PL ISSN 0459-6854

B U L L E T I N
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2010 Vol. LX

Recherches sur les déformations no. 2
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FINSLER GEOMETRY AND PHYSICS. PHYSICAL OVERVIEW

Summary
An analysis of regions of natural applicability in physics of Finsler geometry is given al-

most twenty years after appearance of a monograph in the subject by P. L. Antonelli,
the first-named author of this paper, and late Professor M. Matsumoto (1993). In the
monograph quoted a special attention was paid to geometrical optics in isotropic media,
physiological optics, electron optics with a magnetic field, dissipative mechanics and ther-
modynamics. Now we observe the natural applicability also in the following directions:
– 1. Matsumoto, generalized Matsumoto, and Randers-Ingarden spaces in thermodynam-
ics, – 2. Randers-Ingarden spaces in electrodynamics, especially in the model of magnetic
electron microscope including the scanning microscope, – 3. Randers geometry and gauge
theories, – 4. Randers antisymmetric metric in the space-time of generally relativity, –
5. Finsler-geometrical model of quantum electrodynamics.

0. After almost twenty years, when looking to [AIM], we can see the necessity
of more stressing the variability of physical states, the probability character of the
field amplitudes and the time instability of particles and of their open systems as
“objects” of physical investigation. These systems are closely related with the phys-
ical character of the basic manifold on which the fields are defined. If the space of
that manifold is filled with homogeneous, not necessarily isotropic matter, e.g. a
transparent crystal, the geometry will change from Euclidean or pseudo-Euclidean
to Finslerian or pseudo-Finslerian. It is then natural to distinguish at least five
directions 1.–5. of our scientific interests, listed in the Summary.

1. Physically, as far as the first direction (1.) is concerned, our task causes the
following demands [SSI1, �L]:

• Matsumoto spaces in thermodynamics.

• Generalized Matsumoto spaces in thermodynamics.
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• Principles of thermodynamics including the electromagnetic effects.

• Randers and Ingarden spaces vs. openess and dissipativity of the system.

• Hyperbolicity, Minkowskian spaces, and parabolicity in thermodynamic ge-
ometry.

• Thermodynamic parameters and geometry in presence of the electromagnetic
field.

• Statistical or stochastical thermodynamics?

The programme involves two kinds of Randers-Ingarden spaces, i.e. Randers
spaces (M,F ) [I�L3], Section 9, equipped with a Lorentz nonlinear connection N

or a Cartan nonlinear connection N c. We are dealing with at least two kinds of
information (entropy). The first one is the Shannon information of η = 1 or −1:

Sη = − ln p− ln(1 − p), 0 ≤ p ≤ 1,

where p is the probability of the value −1 of η. The second one, Sσ, is assumed to be
the quantum information (entropy) of the medium composing our physical system.
Using the temporal projection dσ2 = σ̃dt2 in relation with the space-time elements

ds2 = c2dt2 − dx2 − dy2 − dz2 − ηdσ2,

we have
Sσ = σ̃/c.

Both σ̃ and c (the light velocity in vacuum) have the dimension of velocity, so Sσ is a
pure number, as it should be for information or entropy in physics. If we use physical
units by introducing the Boltzmann constant KB ≈ 1.3806503 · 10−23 JK−1, entropy
is also a pure number, since joule (J) and Kelvin (K) can both be considered in
the statistical or stochastical thermodynamics as different units of energy. It seems
that entropy is the only fundamental physical unit which is dimensionless (a pure
number).

2. In the second direction we have to study in detail the following particular problems
[SSI2, I�L5, 6]:

◦ Additional interactions between gravitational and electromagnetic forces.

◦ Properties of electromagnetic “lenses” including the torsion of electron trajec-
tories.

◦ Generalizations of the Helmholtz-Lagrange law for an electric “lens”.

◦ Importance of combining the focal length calculation with a non-Riemannian
geometry.

◦ Construction of a Randers-type electromagnetic space.

◦ Immersion electromagnetic “lenses” in practice and in the constructed Ran-
ders-type electromagnetic space.
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◦ Torsion-depending deformations within the electromagnetic spaces.

◦ Electromagnetic space of an electromagnetic microscope.

◦ Deformation of potentials in an electromagnetic space with the help of gener-
ating functions.

◦ “Lens”-thickness depending deformations in relation with the scanning micro-
scope.

◦ Explicit formula for the focal length depending on the electromagnetic “lens”
thickness.

◦ Potentials generating functions dependence vs. immersion electromagnetic
“lenses” dependence.

The programme is in some sense a natural consequence of Einstein’s formulation
of the general relativity. Namely, he demanded an inhomogeneous and anisotropic
metric of space, or – in other words – an anisotropic space. Already four years
after Einstein’s discovery Carathéodory [C2] and von Neumann [vN1] considered a
point- and direction-dependent metric, and Finsler [Fi] formulated the problem in
detail. Its further specification was due to Randers [Ra, I�L3] who proposed a point-
and direction-dependent metric, according to Maxwell’s description of a magnetic
electron microscope and a number of other problems in electrodynamics. This line
of thinking has been adapted in our programme with a suggestion of using a slightly
more sophisticated Randers-Ingarden spaces.

3. In the third direction we have to discuss [I�L2]:

• Solitons in the Randersian physics.

• Complex Randersian physics vs. isospectral deformations.

• Complex gauge connections of interacted fields.

• Hurwitz pair description of gauge theories.

• Generations of Ka�luża-Klein dualities vs. Ka�luża-Klein-type theories.

• Self-duality equations for gauge theories.

• Homogeneity vs. gauge theories of the second order.

The programme refers to Ka�luża-Klein gauge theories, natural e.g. for theories unify-
ing electrodynamics and thermodynamics, and the corresponding gauge transforma-
tion due to an external field leads, in general, to a Randers metric. Now, the Randers
geometrical approach to gauge theories yields the theory containing solitons of field
equations. It is then natural to distinguish static, dynamic, probabilistic, and quan-
tum Randers spaces including, because of space-time, complex Randers structures.

A different idea of connecting Finsler geometry with gauge theories is due to
Asanov [As]. He gives a Finslerian representations of gauge fields and tensors, dis-
cusses gauge-covariant derivatives of spinors and isospinors, investigates linear gauge
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transformations and Finslerian geometrization of isotopic invariance. The approach
is related with interaction models for physical fields exhibiting internal properties,
and with developing various gauge-geometric generalizations of the theory of Yang-
Mills fields. It generates general gauge field equations associated with the curved
internal space. In particular, Asanov formulates the variational principle for the
parametrical gauge fields, gives general gauge-covariant physical field equations, a
parametrical representation of the (x, y)-dependent gauge fields associated with the
space-time, transition to the parametrical Finslerian limit, and characterizes proper
Finslerian gauge transformations.

4. In the fourth direction we have to describe [I�L4]:

◦ Forward and backward metrics in general relativity.

◦ Convexity of spheres and perpendicularity.

◦ Asymptotes and parallels.

◦ Axial motions and translations.

◦ Coincidence of the manifold topology with that generated by forward metric
balls.

◦ The clocks synchronization.

◦ The interia tensor vs. non-inertial frames.

◦ Spin connections of the triple of correlations diffeomorphism ξ of two physical
systems, ξ-morphism e of the related vector bundles, and the metric F0.

In this part of the programme, in connection with the general relativity, and for
showing the role of asymmetric, in particular antisymmetric metrics, we have to dis-
cuss the convexity of spheres, perpendicularity, asymptotes, parallels, axial motions,
and translations in straight surfaces. In addition to these topics we have to explore
the fact that the manifold topology coincides with that generated by forward metric
balls. In the space-time of general relativity good examples of important problems
are: the clocks synchronization, a strange behaviour of relativistic correlations vs.
the quantum preferred frame, the inertia tensors vs. non-inertial frames, and spin
correlations.

5. In the fifth direction we have to study [I�L7, 8]:

• Generalized Dirac-Maxwell systems.

• Complex-analytical approach vs. physical demands.

• Related convolution equations with applications.

• A generalization: Yang-Mills equation in the presence of an external field.

• The case of an arbitrary symmetry within the groups SO(m) or SU(m).

• The global Yang-Mills system.
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• SU(2)-based non-abelian generalizations.

• Generalizations of the Lagrangian and its embedding in the electroweak model.

• A concept of the five-dimensional model of nonlinear electrodynamics.

• Ferroelectric crystals in a Finsler geometry.

• The Finsler-geometrical counterpart of the sine-Gordon equation for the sur-
face.

• The solenoidal and nonsolenoidal parts of the generalized Yang-Mills equations
as observed on the canonical principal fibre bundle.

• Connections corresponding to the Yang-Mills field vs. the Yang-Mills field it-
self.

• The case of an arbitrary symmetry within SO(r + 1, s).

• Simplifying the external field in terms of the metric and connection.

• The Einstein centrifuge.

When constructing a Finsler-geometrical model of quantum electrodynamics, we
take into account that in quantum relativistic mechanics of electrons there are some
physical constants, like Planck’s constant h, light velocity c, and the mass and spin
constants of an electron. In the usual technical units corresponding to the human
scale of dimensions these constants are either very big, like c, or very small, like
h. This naturally suggests the limiting cases of non-relativistic and non-quantum
physics. If we take both these limits, we obtain the approximation given by the
usual classical non-relativistic physics which has no more cosmic or microscopic
constants, and therefore is parameter- or scale-independent, just as traditional logic
or mathematics are [I].

In the present, more ambitious theory we go back to the ideas of [Wi1–3, HeJ,
J1, 2; Kl] and [JW, D, Bu, Sa, Wh]. We can see that the concept of a particle as
an independent and constant physical thing actually disappears in contradiction to
the first quantization theory. Particles are created and annihilated as excitations of
the whole field and the number of particles is, in general, not preserved. Only the
total electric charge of the field is preserved as the difference of the positive and
negative charges of positrons and electrons. Quantum partcles are usually entangled
with the whole quantum field; they also interact with other fields: electromagnetic,
gravitational, etc., and therefore are usually unstable and have no individuality, only
some statistical properties, like antisymmetric statistics for fermions, and symmetric
one for bosons.
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[C1] C. Carathéodory, Über das Schwarzsche Lemma bei analytischen Funktionen von zwei
komplexen Veränderlichen, Math. Ann. 97 (1926), 76–98.
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Déform. 56 (2009), 49–60.

[I�L3] —, —, Finsler geometry and physics. Mathematical overview, ibid. 58 Sér. Rech.
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GEOMETRIA FINSLERA A FIZYKA. SPOJRZENIE FIZYCZNE

S t r e s z c z e n i e
Niemal dwadzieścia lat po ukazaniu siȩ w zakresie rozpatrywanego tematu monografii

P. L. Antonelliego, pierwszego z autorów obecnej pracy i nieodża�lowanej pamiȩci Profe-
sora M. Matsumoto (1993) podajemy kolejna̧ analizȩ naturalnych obszarów stosowalności
geometrii Finslera w fizyce. W cytowanej monografii szczególna uwaga by�la zwrócona na
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optykȩ geometryczna̧ ośrodków niejednorodnych, optykȩ fizjologiczna̧, optykȩ elektronowa̧
z dzia�laniem pola magnetycznego, mechanikȩ dyssypatywna̧ oraz termodynamikȩ. Obecnie
obserwujemy naturalne zastosowania geometrii Finslera również w nastȩpuja̧cych kierun-
kach: – 1. Przestrzenie Matsumoto, uogólnione przestrzenie Matsumoto i przestrzenie Ran-
dersa-Ingardena w termodynamice; – 2. Przestrzenie Randersa-Ingardena w elektrodynami-
ce, w szczególności w modelu magnetycznego mikroskopu elektronowego uwzglȩdniaja̧cym
mikroskop skaningowy; – 3. Geometria Randersa i teorie cechowania; – 4. Antysymetryczna
metryka Randersa w czasoprzestrzeni ogólnej teorii wzglȩdności; – 5. Model Finslerowsko-
geometryczny elektrodynamiki kwantowej.
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