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SEPARATING TRANSFORMATION AND EXTREMAL

DECOMPOSITION OF THE COMPLEX PLANE

Summary
The paper is devoted to extremal problems of the geometric function theory of complex

variable associated with estimates of functionals defined on systems of non-overlapping do-
mains. In particular, focus of investigation is well-known Dubinin’s problem about extremal
decomposition of the complex plane.

Keywords and phrases: inner radius, non-overlapping domains, “free” poles, n-radial system

of points, Dubinin problem, inequalities, quadratic differential

1. Introduction

Let N, R be a set of natural and real numbers, respectively, C be a complex plane,

C = C
⋃
{∞} be a Riemann sphere and R+ = (0,∞).

A finite set of arbitrary domains {Bk}nk=1, n ∈ N, n > 2 such, as Bk ⊂ C,

Bk ∩Bm = ∅, k 6= m, k,m = 1, n is called a system of non-overlapping domains.

Let

r(B, a) =

exp( lim
z→a

(gB(z, a) + log |z − a|)), a 6=∞

exp( lim
z→a

(gB(z, a)− log |z|)), a =∞

be an inner radius of the domain B ⊂ C with respect to the point a ∈ B, gB(z, a) is

a Green’s function for the domain B. Inner radius is a generalization of conformal

radius for multiply connected domains (see [1–3]).
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Let n ∈ N. A set of points

An :=
{
ak ∈ C : k = 1, n

}
,

is called n-radial system, if

|ak| ∈ R+, k = 1, n, and 0 = arg a1 < arg a2 < . . . < arg an < 2π.

Denote

αk :=
1

π
arg

ak+1

ak
, αn+1 := α1, k = 1, n.

Consider next problem.

Problem 1. Show that the maximum of the product

Jn(γ) = rγ (B0, 0)

n∏
k=1

r (Bk, ak) ,

where B0, B1, B2,...,Bn, n > 2 are pairwise non-overlapping domains in C, a0 = 0,

|ak| = 1, k = 1, n and γ > 0, achieved for some configuration of the domains Bk and

points ak, k = 0, n, which are having n-fold symmetry.

This problem has a solution only if γ 6 n, as soon as γ = n + ε, ε > 0, the

Problem 1 has no solution.

Problem 1 was formulated in 1994 [4], and then repeated in 2009 [5]. Currently

it is not solved in general, known only special results.

In 1988 in Dubinin’s work [6] this problem was solved for γ = 1 and n > 2, and

from the method of this work it implies that the result is true and for 0 < γ < 1.

In 1996 L. V. Kovalev [7] got the solution to this problem with some restrictions

on the geometry location of sets of points on the unit circle and, namely, for n > 5

and subclass points systems satisfying condition

0 < αk 6 2/
√
γ, k = 1, n.

It is clear that these conditions are sufficiently stringent conditions, significantly

narrowing the set of feasible configurations. It should be noted that the Kovalev’s

result is interesting not only by itself, but the method of study is important too.

In 2003 in the paper of G. V. Kuzmina [8] in the case of simply connected domains,

this problem has also been studied for γ ∈ (0, 1] by another method.

In 2008 A. K. Bakhtin [9, p. 255] complemented the ideas and methods of previous

works and thus he showed, that the result of V. N. Dubinin holds for arbitrary γ ∈
R+, but since some number n0(γ).

It should be noted in the case γ > 1 method, developed in the paper of

V. N. Dubinin [6], can not be applied.

In 2013 Y. V. Zabolotnii [10] got the solution of Problem 1 for n > 2 and 0 < γ 6
4
√
n, and for 0 < γ 6 nα, where

1

3
< α <

2

3
since some number n > e

1

( 2
3
−α)

2

.
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2. Main results

We got the following result:

Theorem 1. Let n ∈ N, n > 12, γ ∈ (0, γn], γn = n0,45. Then for any n-radial

system of points An = {ak}nk=1 such that |ak| = 1 and any system of non-overlapping

domains Bk, ak ∈ Bk ⊂ C, a0 = 0 ∈ B0, (k = 1, n), we have inequality

rγ (B0, 0)

n∏
k=1

r (Bk, ak) 6

(
4

n

)n
·

(
4γ
n2

) γ
n(

1− γ
n2

)n+ γ
n

·

(
1−

√
γ

n

1 +
√
γ

n

)2
√
γ

,

where equality holds if ak and Bk, k = 0, n, are, respectively, poles and circular

domains of the quadratic differential

Q(w)dw2 = − (n2 − γ)wn + γ

w2(wn − 1)2
dw2.

Proof. L. V. Kovalev [7] proved the hypothesis of V. N. Dubinin if n > 5 and αk
√
γ 6

2, k = 1, n. We must investigate the case α0
√
γ > 2, α0 = max

k
αk. According to the

method of work [9, theorem 5.2.3] we have

Jn(γ) =

n∏
k=1

[r(B0, 0)r(Bk, ak)]
γ
n

[
n∏
k=1

r(Bk, ak)

]1− γn
.

From theorem of M. A. Lavrent’ev [1] next inequality holds

r(B0, 0)r(Bk, ak) 6 |ak|2.

Further from [9, theorem 5.1.1] we have

n∏
k=1

r(Bk, ak) 6 2n
n∏
k=1

αk.

Since
n∑
k=1

αk = 2, we apply the Cauchy inequality between the geometric mean and

the arithmetic mean. So,

Jn(γ) 6

[
2nα0

(
2− α0

n− 1

)n−1]1− γn
,

where α0 = max
k

αk, α0 > 2√
γ . On the other hand it is known [7,9], that

J0
n(γ) =

(
4

n

)n
·

(
4γ
n2

) γ
n(

1− γ
n2

)n+ γ
n

·

(
1−

√
γ

n

1 +
√
γ

n

)2
√
γ

.

J0
n(γ) was first obtained in paper [6] if γ = 1, for any γ in paper [7], then in another

form in monograph [9, p. 257].
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Consider next value On(γ) = Jn(γ)/J0
n(γ) when α0

√
γ > 2. Performing simple

transformations we obtain

On(γ) 6
[n

4

]γ+1

·
[
1− 1
√
γ

]n−1−γ n−1
n

·
(
n

γ

) γ
n

·
(

1− γ

n2

)n+ γ
n ×

×

(
1 +

√
γ

n

1−
√
γ

n

)2
√
γ

·
(

4
√
γ

)1− γn
·
(

n

n− 1

)n−1−γ n−1
n

.

In an analogous way as in papers [9, p.255-259], [10, 11], we investigate evaluation

of each factor of On(γ) according to standard scheme. And thus we showed that

Jn(γ) < J0
n(γ) if γ ∈ (1, n0,45 ], α0

√
γ > 2, n > 12. Hence it follows, that we do not

have extremal configurations for these values of the parameters. Further, we analyze

the case α0
√
γ < 2. Using the results [9–11], we obtain

Jn(γ) 6 γ−
n
2

[
n∏
k=1

P (αk
√
γ)

] 1
2

,

where

P (x) = 2x
2+6 · xx

2+2 · (2− x)−
1
2 (2−x)

2

· (2 + x)−
1
2 (2+x)

2

, x ∈ (0, 2].

Applying the reasoning of paper [7], we have Theorem 1. A sign of equality is verified

directly. Theorem 1 is thus proved.

We also obtained another most strong result for Problem 1. Let

Fδ(x) = 2x
2+6 · xx

2+2−2δ · (2− x)−
1
2 (2−x)

2

(2 + x)−
1
2 (2+x)

2

,

x ∈ (0, 2], 0 6 δ 6 0, 7.

Theorem 2. Let n ∈ N, n > 5, γ ∈ (0, γ0], γ0 = 4
√
n, 0 6 δ 6 0, 7. Then for

any n-radial system of points An = {ak}nk=1 such that |ak| = 1 and any system of

non-overlapping domains Bk, ak ∈ Bk ⊂ C, k = 0, n, a0 = 0, we have inequality

rγ (B0, 0)

n∏
k=1

r (Bk, ak) 6 γ−
δ·n
2 ·

(
n∏
k=1

αk

)δ
·
[
Fδ

(
2

n

√
γ

)]n
2

,

where equality holds in the same case as in Theorem 1.

Proof. Method of proof of this theorem is based on using of separating transformation

[4, 6] and ideas of works [7, 9, 12, 13]. In an analogous way as in papers [11–13] we

obtain next inequality

(1) Jn(γ) 6 γ−
δn
2

(
n∏
k=1

αk

)δ [ n∏
k=1

Fδ (αk
√
γ)

]1/2
, δ ∈ [0; 0, 7].

Consider the functional

J̃n(γ) = γ
δn
2

(
n∏
k=1

αk

)−δ
Jn(γ).
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It follows from (1) that

J̃n(γ) 6

[
n∏
k=1

Fδ (αk
√
γ)

] 1
2

.

Further, consider an extremal problem

n∏
k=1

Fδ(xk) −→ max,

n∑
k=1

xk = 2
√
γ, xk = αk

√
γ

0 < xk 6 2, 0 6 δ 6 0, 7.

Let Ψδ(x) = ln (Fδ(x)). And let X(0) =
{
x
(0)
k

}n
k=1

be an arbitrary extremal point of

this problem. It follows from the paper [7] that: if 0 < x
(0)
k < x

(0)
j < 2, k 6= j, than

Ψ′δ(x
(0)
k ) = Ψ′δ(x

(0)
j ), where k, j = 1, n, k 6= j, 0 6 δ 6 0, 7,

Ψ′δ(x) = 2x ln(2x) + (2− x) ln(2− x)− (2 + x) ln(2 + x) +
2

x
− 2δ

x

(see Fig. 1).

Fig. 1: Graph of the function y = Ψ′
δ(x)

.

We will show that the following assertion is true

x
(0)
1 = x

(0)
2 = . . . = x(0)n .
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Let σ1 := σ1(δ, γ) = min
16k6n

x
(0)
k (δ, γ), σ0 := σ0(δ, γ) = max

16k6n
x
(0)
k (δ, γ), σ1 6 σk 6 σ0,

k = 1, n, 0 6 δ 6 0, 7, γ ∈ (0; 4
√
n].

A function Ψ′′δ (x) is strictly increasing on (0, 2) for each fixed δ. Thus

signΨ′′δ (x) ≡ sign(x− x0(δ, γ)).

It is not difficult to see if σ0 6 x0(δ, γ) then from the conditions of the problem

we obtain x
(0)
1 = . . . = x

(0)
n .

Assume x0(δ, γ) < σ0 6 1, 81. Then

σ1 6
1

n− 1

n−1∑
k=1

x
(0)
k =

2
√
γ − σ0
n− 1

6
2 8
√
n− σ0
n− 1

6
2 8
√

5− σ0
4

.

Therefore for n > 5, γ ∈ (0; 4
√
n], 0 6 δ 6 0, 7, inequality holds

σ1 6 (2 8
√
n− x0(δ, γ))/4 6 (2, 445689− 1, 08441)/4 < 0, 340320.

Thus

Ψ′δ(σ1) > Ψ′δ(0, 340320) > Ψ′0,7(0, 340320) = 0, 352079 >

> 0, 350102 = Ψ′0(1, 81) > Ψ′δ(σ0).

Hence σ0 /∈ (x0(δ, γ); 1, 81].

Let 1, 81 < σ0 6 2. Then for n > 5, γ ∈ (0; 4
√
n], 0 6 δ 6 0, 7, we have

σ1 6 (2 8
√
n− 1, 81)/4 < 0, 158922. That is

Ψ′δ(σ1) > Ψ′δ(0, 158922) > Ψ′0,7(0, 158922) = 2, 873304 > 1 = Ψ′0(2) > Ψ′δ(σ0).

So, σ0 /∈ (x0(δ, γ); 2]. Therefore, extremal set
{
x
(0)
k

}n
k=1

is possible only if

x
(0)
1 = x

(0)
2 = . . . = x(0)n .

From the foregoing the following relation holds
n∏
k=1

Fδ (αk
√
γ) 6

[
Fδ

(
2

n

√
γ

)]n
.

A sign of equality is verified directly. Theorem 2 is thus proved.
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Summary
In the framework of general relativity one has very hard problem with gravitational

energy density, not satisfactorily solved up to now. It is a consequence of the Einstein
Equivalence Principle. To avoid the problem we have introduced in past the canonical su-
perenergy tensors. It turned out that these tensors give a very good tool to local, and in
special cases also to global, analysis of the gravitational field in general relativity (See pa-
pers cited in References). Here we propose a new application of the canonical superenergy
density. Namely, we propose to use this density to study local gravitational stability of
the solutions to the Einstein equations. Our proposition follows the procedure of finding
the stable minima of the interior energy U for a thermodynamical system. By using ther-
modynamical analogy we have formulated and proved Proposition from which it follows
the Conclusion which says that when the total superenergy density, matter and gravi-
tation, is positive-definite, then the solution can be gravitationally stable, i.e., it can be
stable under small metric perturbations. Contrary, when the total superenergy density is
negative-definite, then the solution cannot be gravitationally stable. We give many examples
of application of the Conclusion.

Keywords and phrases: canonical superenrgy tensors, canonical superenergy density, grav-

itational stability

1. The canonical superenergy tensors

We begin with general remark that in the whole paper we use the same signature and

notation as used in the last edition of the famous book by Landau and Lifshitz [7].
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The Λ term which we consider in Section II we treat as source term in Einstein

equations, i.e., as an energy-momentum tensor of the form

ΛT
k
i = (−)

Λ

β
δki , where β =

8πG

c4
.

In the framework of general relativity (GR), as a consequence of the Einstein

Equivalence Principle (EEP), the gravitational field has non-tensorial strengths

Γikl = {ikl} and admits no energy-momentum tensor. One can only attribute to

this field gravitational energy-momentum pseudotensors. The leading object of such

a kind is the canonical gravitational energy-momentum pseodotensor Et
k
i proposed

already in past by Einstein. This pseudotensor is a part of the canonical energy-

momentum complex EK
k
i in GR.

The canonical complex EK
k
i can be easily obtained by rewiriting Einstein equa-

tions to the superpotential form

EK
k
i :=

√
|g|
(
T k
i +E t

k
i

)
=F U

[kl]
i ,l(1)

where T ik = T ki is the symmetric energy-momentum tensor for matter, g = det[gik],

and

Et
k
i =

c4

16πG

{
δki g

ms
(
ΓlmrΓ

r
sl − ΓrmsΓ

l
rl

)
+ gms,i

[
Γkms −

1

2

(
Γktpg

tp − Γltlg
kt
)
gms

− 1

2

(
δksΓlml + δkmΓlsl

)]}
;

FU
[kl]
i =

c4

16πG
gia(

√
|g|)(−1)

[(
−g
)(
gkaglb − glagkb

)]
,b
.(2)

Et
k
i are components of the canonical energy-momentum pseudotensor for gravita-

tional field

Γikl =
{i
kl

}
, and FU

[kl]
i

are von Freud superpotentials.

EK
k
i =

√
|g|
(
T k
i +E t

k
i

)
(3)

are components of the Einstein canonical energy-momentu complex, for matter and

gravity, in GR.

In consequence of (1) the complex EK
k
i satisfies local conservation laws

EK
k
i ,k ≡ 0.(4)

In very special cases one can obtain from these local conservation laws the reasonable

integral conservation laws.

Despite that one can easily introduce in GR the canonical (and others) superen-

ergy tensor for gravitational field. This was done in past in a series of our articles

(See, e.g., [3] and references therein). It appeared that the idea of the superenergy

tensors is universal: to any physical field having an energy-momentum tensor or

pseudotensor one can attribute the coresponding superenergy tensor.
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So, let us give a short reminder of the general, constructive definition of the

superenergy tensor S b
a applicable to gravitational field and to any matter field. The

definition uses locally Minkowskian structure of the spacetime in GR and, therefore,

it fails in a spacetime with torsion, e.g., in Riemann-Cartan spacetime.

In normal Riemann coordinates NRC(P) we define (pointwiese and in coordin-

ate-free way)

S
(b)

(a) (P ) = S b
a := (−) lim

Ω→P

∫
Ω

[
T

(b)
(a) (y)− T (b)

(a) (P )

]
dΩ

1/2
∫
Ω

σ(P ; y)dΩ
,(5)

where

T
(b)

(a) (y) := T k
i (y)ei(a)(y)e

(b)
k (y),

T
(b)

(a) (P ) := T k
i (P )ei(a)(P )e

(b)
k (P ) = T b

a (P )

are physical or tetrad components of the pseudotensor or tensor field which describes

an energy-momentum distribution, and
{
yi
}

are normal coordinates. ei(a)(y), e
(b)
k (y)

mean an orthonormal tetrad ei(a)(P ) = δia and its dual e
(a)
k (P ) = δak paralelly prop-

agated along geodesics through P (P is the origin of the NRC(P)). We have

ei(a)(y)e
(b)
i (y) = δba.(6)

For a sufficiently small 4-dimensional domain Ω which surrounds P we require∫
Ω

yidΩ = 0,

∫
Ω

yiykdΩ = δikM,(7)

where

M =

∫
Ω

(y0)2dΩ =

∫
Ω

(y1)2dΩ =

∫
Ω

(y2)2dΩ =

∫
Ω

(y3)2dΩ,(8)

is a common value of the moments of inertia of the domain Ω with respect to the

subspaces yi = 0, (i = 0, 1, 2, 3). We can take as Ω, e.g., a sufficiently small analytic

ball centered at P :

(y0)2 + (y1)2 + (y2)2 + (y3)2 ≤ R2,(9)

which for an auxiliary positive-definite metric

hik := 2vivk − gik,(10)

can be written in the form

hiky
iyk ≤ R2.(11)

A fiducial observer O is at rest at the beginning P of the used Riemann normal

coordinates NRC(P) and its four-velocity is vi = ∗ δio. = ∗ means that an equations

is valid only in special coordinates.

We would like to note that we always will take ei(o) = vi = ∗ δio.
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σ(P ; y) denotes the two-point world function introduced in past by J. L. Synge [4]

σ(P ; y) = ∗1

2

(
yo

2

− y12

− y22

− y32)
.(12)

The world function σ(P ; y) can be defined covariantly by the eikonal-like equation [4]

gikσ,iσ,k = 2σ, σ,i := ∂iσ,(13)

together with

σ(P ;P ) = 0, ∂iσ(P ;P ) = 0.(14)

The ball Ω can also be given by the inequality

hikσ,iσ,k ≤ R2.(15)

Tetrad components and normal components are equal at P, so, we will write the

components of any quantity attached to P without tetrad brackets, e.g., we will

write S b
a (P ) instead of S

(b)
(a) (P ) and so on.

If T k
i (y) are the components of an energy-momentum tensor of matter, then we

get from (5)

mS
b
a (P ; vl) =

(
2v̂lv̂m − ĝlm

)
∇l∇mT̂ b

a = ĥlm∇l∇mT̂ b
a .(16)

Hat over a quantity denotes its value at P, and ∇ means covariant derivative.

Tensor mS
b
a (P ; vl) is the canonical superenergy tensor for matter.

For gravitational field, substitution of the canonical Einstein energy-momentum

pseudotensor as T k
i in (5) gives

gS
b
a (P ; vl) = ĥlmŴ b

a lm,(17)

where

W b
a lm =

2α

9

[
Bbalm + P balm

− 1

2
δbaR

ijk
m

(
Rijkl +Rikjl

)
+ 2δbaβ

2E(l|gE
g
|m)

− 3β2Ea(l|E
b
|m) + 2βRb(a|g|l)E

g
m

]
.

Here

α =
c4

16πG
=

1

2β
,

and

E k
i := T k

i −
1

2
δki T(18)

is the modified energy-momentum tensor of matter. In terms of E k
i Einstein equa-

tions read R k
i = βE k

i . If we admit Λ term then we will have R k
i = βE k

i + Λδki .

On the other hand

Bbalm := 2Rbik(l|Raik|m) −
1

2
δbaR

ijk
lRijkm(19)
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are the components of the Bel-Robinson tensor (BRT), while

P balm := 2Rbik(l|Raki|m) −
1

2
δbaR

jik
lRjkim(20)

is the Bel-Robinson tensor with “transposed” indices (ik).

Tensor gS
b
a (P ; vl) is the canonical superenergy tensor for gravitational field

{i
kl

}
.

In vacuum gS
b
a (P ; vl) takes the simpler form

gS
b
a (P ; vl) =

8α

9
ĥlm

(
Ĉbik(l|Ĉaik|m) −

1

2
δbaĈ

i(kp)
(l|Ĉikp|m)

)
.(21)

Here Cablm denote components of the Weyl tensor.

Some remarks are in order:

1. In vacuum the quadratic form gS
b
a v

avb, where vava = 1, is positive-definite

giving the gravitational superenergy density εg for a fiducial observer O.

2. In general, the canonical superenergy tensors are uniquely determined only

along the world line of the observer O. But in special cases, e.g., in Schwarz-

schild spacetime or in Friedman universes, when there exists a physically and

geometrically distinguished four-velocity vi(x), one can introduce in an unique

way the unambiguous fields gS
k
i (x; vl) and mS

k
i (x; vl).

3. We have proposed in our previous papers to use the tensor gS
k
i (P ; vl) as a

substitute of the non-existing gravitational energy-momentum tensor.

4. It can be easily seen that the superenergy densities

εg :=g S
k
i v

ivk, εm :=m S k
i v

ivk

for an observer O who has the four-velocity vi correspond exactly to the energy

of acceleration 1
2m~a~a which is fundamental in Appel’s approach to classical

mechanics [5].

In past we have used the canonical superenergy tensors gS
k
i and mS

k
i to local

(and also, in some cases, to global) analysis of well-known solutions to the Einstein

equations like Schwarzschild and Kerr solutions; Friedman and Goedel universes, and

Kasner and Bianchi I, II universes. The obtained results were interesting (See [3]),

e.g., the total superenergy S for exterior Schwarzschild spacetime is immediately

conected with Hawking temperature T of a Schwarzschild black hole.

We have also studied the transformational rules for the canonical superenergy

tensors under conformal rescalling of the metric gik(x) [3, 6].

The idea of the superenergy tensors can be extended on angular momentum

also [3]. The obtained angular supermomentum tensors do not depend on a radius

vector and gravitational angular supermomentum tensor depends only on spinorial

part of the gravitational angular momentum pseudotensor. We have used in our

investigation the Bergmann-Thomson expression on angular momentum in general

relativity.
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2. Gravitational stability of the solutions to the Einstein equa-
tions and canonical superenergy density

By local gravitational stability we mean stability of a background metric g̃ik(x) under

small perturbations, see, e.g., [7, 8]

gik(x) = g̃ik(x) + hik(x),(22)

where |hik(x)| � |g̃ik(x)|.
This kind of stability is different from Lyapunov’s stability connected with well-

posed Cauchy problem and it is important for structure formation on a given back-

ground.

Recently we have observed an exciting correlation between the total superenergy

density, εs := εm + εg, and gravitational stability of the solutions to the Einstein

equations. Namely, we have noticed that when a solution is stable at point P, then

εs(P ) ≥ 0, and when the solution is unstable, then εs(P ) < 0.

The examples of the above mentioned correlation

1. Exterior Schwarzschild with Λ = 0 — stable — εs > 0:

2. Einstein static universe — unstable — εs < 0;

3. Kerr solution with Λ = 0 — stable — εs > 0;

4. Standard Friedman universes with Λ = 0 — stable — εs > 0;

5. Exterior Reissner-Nordstroem with Λ = 0 — stable — εs > 0;

6. Minkowski spacetime — stable — εs = 0.

In the above examples P is an arbitrary point of the corresponding spacetime.

One can easily see that the above mentioned correlation follows from the Propo-

sition.

Proposition. If the canonical total energy density K 0
0 (y) has stable minimum at

P , i.e., if P is stability point of the analyzed solution, g̃ik(y), then εs(P ) > 0.

Proof. ? Our proof lies on the constructive definition (5) and on the following ther-

modynamical fact: a stable minimum of the interior energy U = U(S, V,N) is given

by

δU = 0, δ2U > 0.(23)

We will apply the analogical conditions to the total canonical energy density,

matter and gravitation, EK
0

0

(
g; gik; gik,l; , g

ik
,lm

)
in NRC(P). We use NRC(P) in

our proof but we write the results covariantly. In consequence the εs has the same

value as in the coordinates (xi) which we use in our calculations under condition

that we use the same vector vivi = 1 calculating εs.
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Namely, we put in NRC(P)

δEK
0

0 (P ) = 0, δ2
EK

0
0 (P ) > 0(24)

as conditions on stable minimum of the EK
0

0 (y) at the point P .

Small metric perturbations (22) do not destroy such minimum like as small vari-

ations δS, δV, δN do not destroy a local, stable minimum of U , i.e., the local

minimum defined by (24) is a stable point of the considered background solution

g̃ik(y).

It is seen from (5), (8), (12) that the sign of the superenergy density

S b
a (P )vavb = ? S 0

0 (P )

is determined by the sign of the integral in nominator of (5) because (-) denominator

is always positive. Therefore, if K 0
0 (y) has stable minimum at point P , ie., if

δEK
0

0 (P ) = 0, δ2
EK

0
0 (P ) > 0, then S 0

0 (P ) =g S
0

0 (P ) +m S 0
0 (P ) = εs(P ) > 0

in the case because K
(0)

(0) (y)−K 0
0 > 0. ?

From the Proposition it follows important Conclusion that S 0
0 (P ) > 0 is neces-

sary condition for gravitational stability in P (We write this covariantly as εs(P ) =

S k
i (P )vivk > 0.) P ∈ Ω is a running point of Ω.

From the Conclusion one has immediately that if S 0
0 (P ) < 0 in the domain Ω

(We write this covariantly as εs(P ) = S k
i (P )vivk < 0, P ∈ Ω.), then the considered

solution cannot be gravitationally stable in Ω.

The stable flat Minkowskian spacetime gives an example of a limiting case with

S 0
0 = εs = 0.

Some examples of the application of the above Conclusion

1. De Sitter spacetime — εs < 0 =⇒ The solution cannot be gravitationally

stable.

2. Anti-de Sitter universe — εs < 0 =⇒ The solution cannot be gravitationally

stable.

3. Bianchi I universe with Λ = 0 — εs > 0 =⇒ This solution can be gravitation-

ally stable.

4. Kasner universe with Λ = 0 — εs > 0 =⇒ This solution also can be gravita-

tionally stable.

In the above examples P is an arbitrary point of the solution.

5. Expanding dust Friedman universes with k = 0, Λ < 0: εs > 0 for small values

of the cosmic time t, and εs < 0 for big values of t. It means that the solution

can be stable only for small values of the cosmic time t.

6. Oscillating Friedman dust universes with k = 0, Λ > 0: εs > 0 for bigger

values of the scale factor R(t)
(
for t ∈ (π/3, 5

3π)
)
, and εs < 0 for smaller



28 J. Garecki

values of R(t)
(
for t ∈ (0, π3 ; 5

3π, 2π)
)
. Thus, these solutions can be stable

only for bigger values of the scale factor R(t);

7. Expanding dust Friedman universe with k = (−)1, Λ < 0: εs > 0 for small

values of the cosmic time t, and εs < 0 for big values of t. So, this solution,

likely as in the case 5., can be gravitationally stable only for small values of t;

8. Exterior SdS static universe with Λ > 0 and SadS static universe with Λ < 0:

εs < 0 for big values of the radial coordinate r, and εs > 0 for small values

of r. We conclude from this that these solutions can be stable only for small

values of r.

9. The Bertotti-Kasner spacetime with positive cosmological constant Λ: εs > 0.

So, this solution can be gravitationally stable.

10. A cosmic string in the Schwarzschild spacetime: εs > 0. This solution also can

be gravitationally stable.

11. Recently we are analyzing the Janis-Newman-Winicour spacetime which in

spherical coordinates (t, r, ϑ, ϕ) reads

ds2 = aγc2dt2 − a−γdr2 − r2a1−γ(dϑ2 + sin2 ϑdϕ2
)
,(25)

where

a := 1− rs
γ · r

, rs =
2GM

c2
,

and the mass parameter M r > rH = rs
γ .

For γ = 1 we obtain the standard Schwarzschild spacetime.

As a preliminary result we have obtained that εs > 0 for 0 < γ ≤ 1. Therefore,

for 0 < γ ≤ 1 this solution can be gravitationally stable.

Concerning more detailed information about calculation of the superenergy den-

sities cited above – see Apendix.

The our results concerning de Sitter and anti-de Sitter universes seem to be

supported by the recent papers [1, 2, 9].

It is very interesting that following our Conclusion the gravitational stability

of the considered dust Friedman models with Λ 6= 0 depends on the evolutional

phase of these universes. It is sensible because Λ < 0 gives here a repulsive force

which is growing with t and, therefore, should produce gravitational instability, and

Λ > 0 gives an additional attractive force growing with R(t) and thus strenthening

gravitational stability.

3. Final remarks

On the superenergy level we have no problem with suitable tensor for gravity, e.g., one

can introduce gravitational canonical superenergy tensor. The canonical superenergy
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tensors, gravitation and matter, are useful to local analysis of the solutions to the

Einstein equations, especially to analyze of their singularities [3].

In this paper we have proposed a new application of the superenergy density to

study local gravitational stability of the solution to the Einstein equations. As it was

already mentioned, this kind of stability is different from Lyapunov’s stability, which

is connected with well-posed Cauchy problem [13](See also [14]), and it is important

for structure formation on a given background. Our criterion of this stability has

thermodynamical origin.

We think that the new application of the superenergy tensors can be useful.
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4. Appendix

We give here the canonical superenergy densities εs for de Sitter, anti-de Sitter,

static Einstein and Reissner-Nordstöm universes, for some dust Friedman universes

with cosmological constant Λ, for static SdS and SadS universes, for Bertotti-Kasner

spacetime, for cosmic string in Schwarzschild spacetime, and for Janis-Newman-

Winicour spacetime. For simplicity we will use in here the geometrized units in

which G = c = 1.

As it was already mentioned we use the same notation and definitions as in [7],

especially, the same form of the Einstein equations without or with cosmological

term, and the same form of the FLRW line element.

The Λ term we always treat as source term in Einstein equations, i.e., as the

energy-momentum tensor of the form

ΛT
k
i = (−)

Λ

β
δki .

1. De Sitter spacetime —

εs = (−)
28

27
αΛ2 < 0.

Calculating εs we have used the the Lemaitre-Robertson form (in Cartesian

coordinates) of the line element for de Sitter spacetime

ds2 = dt2 − e2kt
(
dx2 + dy2 + dz2

)
,(26)

where k2 = Λ
3 .
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2. Anti-de Sitter spacetime —

εs = (−)
32

27
αΛ2 < 0.

In this case we have used the line element in standard, static form

ds2 = a2 cosh2 rdt2 − a2dr2 − a2 sinh2 rdθ2 − a2 sinh2 r sin2 θdϕ2,(27)

where a = const > 0, Λ = (−) 3
a2 < 0.

3. Einstein static universe —

εs = (−)
4α

3R4
< 0, where

1

R2
= 4π

(
ρ+ p

)
= Λ− 8πp > 0;

4. Exterior Reissner-Nordström spacetime —

εs =
2α

9r8

[
3
(
2Q2 − rsr

)2
+ 5
(
Q2 − rsr

)2
+ 2
(
3Q2 − rsr

)2
+ 2

(
3Q2 − rsr

)(
2Q2 − rsr

)]
+

2Q2

r8

(
rsr − 2Q2

)
+

12Q2ΛRN
r6

.(28)

The last expression is positive for

r ≥ rH = m+
√
m2 −Q2,

i.e., outside and on horizon H of the Reissner-Nordström black hole.

Here

rs := 2m, ΛRN := 1− 2m

r
+
Q2

r2
, and m2 > Q2, α =

1

16π
, β = 8π.

Concerning the line elements for Einstein static universe and for exterior

Reissner-Nordstroem universe see [11] and [12] respectively.

5. FLRW dust universes with Λ 6= 0, k = 0. In this case

εs =
32α

3

R̈2

R2
+

284

3
α
Ṙ4

R4
− 124α

R̈Ṙ2

R3
+ 12α

Ṙ
...

R

R2
.(29)

For Λ < 0, k = 0 one has the solution of the suitable Friedman equation [10]

R3 =
3C

2Λ

[
ch{t(−3Λ)1/3} − 1

]
, C =

8

3
πρR3 = const,(30)

from which it follows

R(t) = At2/3(31)

for small t, and

R(t) = Bebt,(32)

for big values of t.

Here A, B, b denote suitable, positive constants.
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Substituting the asymptotic values of R(t) given by (31) and (32) into (29),

one gets

εs =
9248α

243t4
> 0,(33)

for small t, and

εs = (−)
20

3
αb4 < 0,(34)

for big values of t.

For Λ > 0, k = 0, one has the oscillatory solution to the Friedman equation [10]

R(t) = A
(
1− cosbt

)1/3
,(35)

where

A =

(
3C

2Λ

)1/3

, b = (3Λ)1/3, bt ∈ [0, 2π].(36)

In this case the formula (29) gives

εs =
32α

27

b4 cos2 bt

(1− cos bt)2
− 1148αb4

81

cos bt sin2 bt

(1− cos bt)3

(37)

+
1232αb4

243

sin4 bt

(1− cos bt)4
− 4αb4

3

sin2 bt

(1− cos bt)2
.

Again sign of the expression (37) depends on the evolutional phase of this

universe: for bigger values of R(t), i.e., for t ∈
(
π
3 ,

5
3π
)
, we have εs > 0, and

for smaller values of R(t), i.e., for t ∈
[
(0, π3 ) ∪ ( 5

3π, 2π)
]

we have εs < 0.

6. Friedman dust universe with Λ < 0, k = (−)1.

One gets in the case

εs =
32α

3

R̈2

R2
− 4α

3R2
− 280α

3

Ṙ2

R4

(38)

+
284α

3

Ṙ4

R4
− 124α

Ṙ2R̈

R3
+ 12α

Ṙ
...

R

R2
+ 4α

R̈

R3
.

Following Bondi [10] here we have

R(t) = At2/3(39)

for small values of t, and

R(t) = BeDt,(40)

for big values of the cosmic time t.

Here A, B, D mean suitable, positive constants.

Substituting the asymptotic values (39), (40) of the scale factor R(t) into (38)

one gets that

εs =
α

27t4
1, 688(8) > 0,(41)
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for small values of t, and

εs = (−)
29α

3
D4 < 0,(42)

for big values of the cosmic time t.

7. Static SdS universe with Λ > 0 and static SadS universe with Λ < 0.

In this case

εs =
12α

9r4

[
8

3

(
rs
2r
− Λr2

3

)2

+
1

4

(
rrs +

Λr4

3

)2
]

(43)

+
4α

9

( rs
r3

+
Λ

3

)2 − 4

3
αΛ2,

where rs = 2m.

It is easily seen from (43) that for big values of the radial coordinate r (We

leave only the terms with Λ in the case)

εs = (−)
20α

27
Λ2 < 0,(44)

and for small values of r (We omit here the terms with Λ)

εs =
8α

3

rs
r6

> 0.(45)

8. Bertotti-Kasner spacetime [12] with cosmological constant Λ > 0 —

εs =
4α

9
Λ2 > 0, where α =

1

16π
.

9. A cosmic string in the Schwarzschild spacetime [12] —

εs =
8α

3

4M2

r6
> 0.

M is the mass of the black hole.

10. Janis-Newman-Winicour spacetime [12]. One gets in the case

εs =
4α

9

[
6r2
s

[
2γr − rs

(
γ + 1

)]2
a2γ−4

16γ2r8
−
r4
s

(
1− γ2

)2
a2γ−4

4γ2r8

]
+

2α

9

[
12r2

s

[
2γ2r − rs

(
γ + 1

)]2
a2γ−4

16γ4r8
+

6r2
s

[
4γ2r − rs

(
γ + 1

)2]2
a2γ−4

16γ4r8
(46)

+
r3
s

[
2γr − rs

(
γ + 1

)](
1− γ2

)
a2γ−4

4γ3r8

]
+

1

κ

r4
s

(
1− γ2

)(
1 + 2γa

)
a3γ−4

4γ3r8
.

κ = 1
2α . Our preliminary result is that εs > 0 for 0 < γ ≤ 1.

The total superenergy densities for the other solutions to the Einstein equations

mentioned in this paper have been already given in past [3].
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GȨSTOŚĆ KANONICZNEJ SUPERENERGII

A LOKALNA STABILNOŚĆ GRAWITACYJNA

S t r e s z c z e n i e

W tej pracy pokazano, że gestość kanonicznej superenergii determinuje lokalna̧ sta-
bilność grawitacyjna̧ rozwia̧zań równań Einsteina. Pokazano mianowicie, że rozwia̧zanie
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z dodatnia̧ gȩstościa̧ może być stabilne a rozwia̧zanie z ujemna̧ gȩstościa̧ kanonicznej su-
perenergii jest lokalnie grawitacyjnie niestabilne. Rezultat ten może być ważny dla badań
nad powstawaniem lokalnych struktur w danej czasoprzestrzeni, tj., na tle danego rozwia̧za-
nia równań Einsteina.

S lowa kluczowe: tensory superenergii kanonicznej, gȩstość superenergii kanonicznej, sta-
bilność grawitacyjna
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We denote by Lp, 1 ≤ p < ∞, the space of 2π–periodic functions f : R → C,

summable to the power p on [0, 2π), in which the norm is given by the formula

‖f‖p =
( 2π∫

0

|f(t)|pdt
) 1
p

;

and we denote by L∞ the space of 2π-periodic measurable and essentially bounded

functions f : R→ C with the norm ‖f‖∞ = ess sup
t
|f(t)|;

Let f : R→ R be the function from L1, whose Fourier series has the form
∞∑

k=−∞

f̂(k)eikx,
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where

f̂(k) =
1

2π

π∫
−π

f(t)e−iktdt

are Fourier coefficients of the function f , ψ(k) is an arbitrary fixed sequence of real

numbers and β is a fixed real number. Then, if the series∑
k∈Z\{0}

f̂(k)

ψ(|k|)
ei(kx+

βπ
2 signk)

is the Fourier series of some function ϕ from L1, then this function is called the

(ψ, β)–derivative of the function f and denoted by fψβ . A set of functions f , whose

(ψ, β)–derivatives exist is denoted by Lψβ (see [1]).

If f ∈ Lψβ and, at the same time, fψβ ∈ N, where N ⊆ L1, then we say that the

function f belongs to the class LψβN. By BR,p we denote the balls of the radius R

of real–valued functions from Lp, i.e., the sets

BR,p := {ϕ : R→ R, ||ϕ||p ≤ R}, R > 0, 1 ≤ p ≤ ∞.

In present paper as N we take the unit balls B1,p. Herewith, the functional classes

LψβB1,p are denoted by Lψβ,p.

In the case ψ(k) = k−r, r > 0, the classes Lψβ,p are well–known Weyl–Nagy

classes W r
β,p.

For functions f from classes Lψβ,p we consider: Ls–norms of deviations of the

functions f from their partial Fourier sums of order n− 1, i.e., the quantities

(1) ‖ρn(f ; ·)‖s = ‖f(·)− Sn−1(f ; ·)‖s, 1 ≤ s ≤ ∞,

where

Sn−1(f ;x) =

n−1∑
k=−n+1

f̂(k)eikx;

best orthogonal trigonometric approximations of the functions f in metric of space

Ls, i.e., the quantities of the form

(2) e⊥m(f)s = inf
γm
‖f(·)− Sγm(f ; ·)‖s, 1 ≤ s ≤ ∞,

where γm, m ∈ N, is an arbitrary collection of m integer numbers, and

Sγm(f ;x) =
∑
k∈γm

f̂(k)eikx;

and best approximations of the functions f in space Ls, i.e., the quantities of the

form

(3) En(f)s = inf
tn−1∈T2n−1

‖f − tn−1‖s, 1 ≤ s ≤ ∞,

where T2n−1 is the subspace of all trigonometric polynomials tn−1 with real coeffi-

cients of degrees not greater than n− 1.
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We set

(4) En(Lψβ,p)s = sup
f∈Lψβ,p

‖ρn(f ; ·)‖s, 1 ≤ p, s ≤ ∞,

(5) e⊥n (Lψβ,p)s = sup
f∈Lψβ,p

e⊥n (f)s, 1 ≤ p, s ≤ ∞,

(6) En(Lψβ,p)s = sup
f∈Lψβ,p

En(f)s, 1 ≤ p, s ≤ ∞.

The following inequalities follow from given above definitions (4)–(6)

(7) En(Lψβ,p)s ≤ En(Lψβ,p)s, e⊥2n−1(Lψβ,p)s ≤ En(Lψβ,p)s, 1 ≤ p, s ≤ ∞.

In present paper we solve the problem about finding the exact order estimates of

the quantities En(Lψβ,∞)s, En(Lψβ,∞)s and e⊥n (Lψβ,∞)s for 1 ≤ s <∞, β ∈ R.

For the Weyl–Nagy classes the exact order estimates of the quantities En(W r
β,p)s

and En(W r
β,p)s are known for all admissible values of parameters r, p, s and β, i.e.,

for

r > max

{
1

p
− 1

s
, 0

}
, β ∈ R and 1 ≤ p, s ≤ ∞

(see, e.g., [2, p. 47–49]). What concerning the best orthogonal trigonometric approx-

imations e⊥n (W r
β,p)s, so order estimates are known for them (see [3]–[9]) for various

(but not for all possible) values of the parameters r, p, s and β.

Order estimates of the quantities (4)–(6) under certain restrictions for the pa-

rameters r, p, s and β were established in the works [1], [10]–[20]. However, the case

p =∞, 1 ≤ s ≤ ∞ for some or another reasons hasn’t been investigated yet.

We denote by P the set of positive, almost decreasing sequences ψ(k), k ≥ 1, (we

remind, that sequence ψ(k) almost decreases, if there exists a positive constant M

such that for arbitrary k1 ≤ k2 the following inequality is satisfied ψ(k2) ≤Mψ(k1))

such that

sup
m∈N

2m+1∑
k=2m

|ψn(k + 1)− ψn(k)| ≤ Kψ(n),

where

ψn(k) =

{
0, k < n,

ψ(k), k ≥ n,
and K is the quantity uniformly bounded with respect to n.

Theorem 1. Let ψ ∈ P , 1 ≤ s <∞ and β ∈ R. Then

(8) En(Lψβ,∞)s � En(Lψβ,∞)s � ψ(n).

Here and in what follows, we write A(n) � B(n) for postive sequences A(n) and

B(n) to denote that there are positive constants K1 and K2 such that

K1B(n) ≤ A(n) ≤ K2B(n), n ∈ N.
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Proof. At first let’s prove that the following inequality is true

(9) En(Lψβ,∞)s ≤ K(1)ψ(n), 1 ≤ s <∞.

In inequality (9) and henceforth by K(i), i = 1, 2, ... we denote quantities uniformly

bounded with respect to n.

If f ∈ Lψβ,∞, then

(10) ‖fψβ ‖s ≤ (2π)
1
s ‖fψβ ‖∞ ≤ (2π)

1
s ,

and so, it is obviously that

(11) Lψβ,∞ ⊂ L
ψ
βB(2π)

1
s ,s
⊂ LψβLs, 1 ≤ s <∞.

The following proposition follows from the theorem 6.7.1 in [1].

Proposition 1. Let 1 < s < ∞, ψ ∈ P , f ∈ LψβLs and β ∈ R. Then for arbitrary

n ∈ N there exists a positive constant K, which is uniformly bounded with respect to

n and f and such that

(12) ‖ρn(f ;x)‖s ≤ Kψ(n)En(fψβ )s.

Taking into account (10), (11) and in view of proposition 1, we obtain the fol-

lowing estimates

(13) En(Lψβ,∞)s ≤ En
(
LψβB(2π)

1
s ,s

)
s
≤ (2π)

1
sKψ(n), 1 < s <∞.

Thus, the inequalities (9) are proved for 1 < s <∞.

Let’s show the rightness of correlation (9) for s = 1. We use the following state-

ment (see, e.g., [2, p. 8]).

Proposition 2. Let 1 ≤ q ≤ p ≤ ∞. On this if f ∈ Lp, then f ∈ Lq and

(14) ‖f‖q ≤ (2π)
1
q−

1
p ‖f‖p.

By using (14) for q = 1, p = 2 and inequality (13) for s = 2, we obtain

En(Lψβ,∞)1 = sup
f∈Lψβ,∞

‖f(·)− Sn−1(f ; ·)‖1

(15)

≤ (2π)
1
2 sup
f∈Lψβ,∞

‖f(·)− Sn−1(f ; ·)‖2 = (2π)
1
2 En(Lψβ,∞)2 ≤ K(1)ψ(n).

The rightness of the inequality (9) follows from (13) and (15).

To obtain the lower bound of the quantity En(Lψβ,∞)s, we consider the following

function

f1(t) = f1(ψ;n; t) = ψ(n) cosnt.
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It is obvious, that f1 ∈ Lψβ,∞ and f1 ⊥ tn−1 for arbitrary tn−1 ∈ T2n−1. Therefore

(16)

π∫
−π

(f1(t)− tn−1(t)) cosntdt =

π∫
−π

f1(t) cosntdt = πψ(n) ∀tn−1 ∈ T2n−1.

On the other hand, taking into account the proposition 2 for q = 1, p = s, we get
π∫
−π

(f1(t)− tn−1(t)) cosntdt ≤ ‖f1 − tn−1‖1

(17)

≤ (2π)1−
1
s ‖f1 − tn−1‖s, 1 ≤ s ≤ ∞, ∀tn−1 ∈ T2n−1.

In view of (16)–(17) we arrive at the inequalities

(18) En(Lψβ,∞)s ≥ En(f1)s = inf
tn−1∈T2n−1

‖f1 − tn−1‖s ≥
1

2
ψ(n), 1 ≤ s ≤ ∞.

Theorem 1 is proved.

We denote by B the set of positive sequences ψ(k), k ∈ N, for each of which there

exists a positive constant K such that

ψ(k)

ψ(2k)
≤ K, k ∈ N.

The sequences

ψ(k) = k−r, r > 0, ψ(k) = ln−ε(k + 1), ε > 0,

etc. are representatives of the set B.

Theorem 2. Let ψ ∈ P ∩B, 1 ≤ s <∞ and β ∈ R. Then

(19) e⊥2n(Lψβ,∞)s � e⊥2n−1(Lψβ,∞)s � ψ(n).

Proof. It follows, from the formulas (7) and (9), that under the conditions of the

theorem 1, next inequalities are true

(20) e⊥2n(Lψβ,∞)s ≤ e⊥2n−1(Lψβ,∞)s ≤ En(Lψβ,∞)s ≤ K(1)ψ(n).

Now we determine a lower bound of the quantity e⊥2n(Lψβ,∞)s. For this we use the

well–known result of Rudin–Shapiro (see, e.g., lemma 6.32.1 in [21]).

Proposition 3. There exists sequence of numbers {εk}∞k=0, such that εk = ±1 and

(21)
∥∥∥ m∑
k=0

εke
ikx
∥∥∥
∞
≤ 5
√
m+ 1, m = 0, 1, ...

Taking into account proposition 3 for m = 2n − 1, we choose the sequence of

numbers

{ξk}∞k=0, ξk = ±1
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such that

(22)
∥∥∥ 2n−1∑
k=0

ξke
ikx
∥∥∥
∞
≤ 5
√

2n.

We set

ψ(0) := ψ(1)

and consider the function

(23) f2(t) = f2(ψ;n; t) :=
1

10
√

2n+ 2

2n−1∑
k=−2n+1

ξ|k|ψ(|k|)eikt.

Since, according to definition of (ψ, β)–derivative and the inequality (22),

∥∥(f2)ψβ
∥∥
∞ =

1

10
√

2n+ 2

∥∥∥ 2n−1∑
k=1

ξke
i(kt+ βπ

2 ) +

2n−1∑
k=1

ξke
i(−kt− βπ2 )

∥∥∥
∞

≤ 1

10
√

2n+ 2

(∥∥∥ 2n−1∑
k=1

ξke
i(kt+ βπ

2 )
∥∥∥
∞

+
∥∥∥ 2n−1∑
k=1

ξke
i(−kt− βπ2 )

∥∥∥
∞

)

=
1

5
√

2n+ 1

∥∥∥ 2n−1∑
k=1

ξke
ikt
∥∥∥
∞
≤ 1,

so f2 ∈ Lψβ,∞.

We consider the quantity

I = inf
γ2n

∣∣∣∣
π∫
−π

(f2(t)− Sγ2n(f2; t))

2n−1∑
k=−2n+1

ξ|k|e
iktdt

∣∣∣∣.
By virtue of Holder’s inequality, proposition 2 and correlation (22) for

1 ≤ s <∞, 1

s
+

1

s′
= 1,

I ≤ inf
γ2n
‖f2(t)− Sγ2n(f2; t)‖s

∥∥∥ 2n−1∑
k=−2n+1

ξ|k|e
ikt
∥∥∥
s′

= e⊥2n(f2)s

∥∥∥ 2n−1∑
k=−2n+1

ξ|k|e
ikt
∥∥∥
s′
≤ (2π)

1
s′ e⊥2n(f2)s

∥∥∥ 2n−1∑
k=−2n+1

ξ|k|e
ikt
∥∥∥
∞

≤ 2πe⊥2n(f2)s

(∥∥∥ 2n−1∑
k=0

ξke
ikt
∥∥∥
∞

+
∥∥∥ 2n−1∑
k=1

ξke
−ikt

∥∥∥
∞

)
(24)

≤ 2πe⊥2n(f2)s

(
2
∥∥∥ 2n−1∑
k=0

ξke
ikt
∥∥∥
∞

+ 1
)
≤ 2π(10

√
2n+ 1) e⊥2n(f2)s.
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On the other hand, taking into account the orthogonality of trigonometric system

{eikt} and the fact that ξ2k = 1, we obtain

I =
1

10
√

2n+ 2
inf
γ2n

∣∣∣∣
π∫
−π

∑
|k|≤2n−1,
k/∈γ2n

ξ|k|ψ(|k|)eikt
2n−1∑

k=−2n+1

ξ|k|e
iktdt

∣∣∣∣
(25)

=
π

5
√

2n+ 1
inf
γ2n

∑
|k|≤2n−1,
k/∈γ2n

ψ(|k|).

Since the sequence ψ(k) almost decreases, so

(26) inf
γ2n

∑
|k|≤2n−1,
k/∈γ2n

ψ(|k|) ≥ K(2) inf
γ2n

∑
|k|≤2n−1,
k/∈γ2n

ψ(2n− 1) = K(2)ψ(2n− 1)(2n− 1).

In view of (24)–(26) we get

(27) e⊥2n(f2)s ≥
K(2)ψ(2n− 1)(2n− 1)

(10
√

2n+ 2)(10
√

2n+ 1)
≥ K(3)ψ(2n).

Since, if ψ ∈ B, so ψ(2n) ≥ K(4)ψ(n), and, hence, taking into account (27), we

find

(28) e⊥2n(Lψβ,∞)s ≥ e⊥2n(f2)s ≥ K(5)ψ(n).

Estimates (19) follow from (20) and (28). Theorem 2 is proved.

Corollary 1. Let r > 0, 1 ≤ s <∞ and β ∈ R. Then

(29) e⊥2n(W r
β,∞)s � e⊥2n−1(W r

β,∞)s � n−r.
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OSZACOWANIA DLA APROKSYMACJI SUMAMI FOURIERA,

NAJLEPSZYCH APROKSYMACJI I NAJLEPSZYCH

ORTOGONALNYCH TRYGONOMETRYCZNYCH APROKSYMACJI

KLAS FUNKCJI RÓŻNICZKOWALNYCH

S t r e s z c z e n i e

Uzyskujemy oszacowania dok ladne co do rzȩdu aproksymacji sumami Fouriera i na-
jlepszych ortogonalnych trygonometrycznych aprksymacji w metrykach przestrzeni Ls, 1 ≤
s < ∞, klas funkcji 2π-okresowych, których (ψ, β)-pochodne należa̧ do kuli jednostkowej
w przestrzeni L∞.

S lowa kluczowe: sumy Fouriera, najlepsze aproksymacje, najlepsze ortogonalne trygonom-

etryczne aproksymacje
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THE HIERARCHY STRUCTURE OF TURING MACHINE IN PHYSICS

Summary
We recall some basic facts on Turing machine and observe its hierarchy structure.

Associating the particle and anti-particle to the push down automaton and three quarks to
linear bounded automaton, respectively. We can describe quark physics in terms of Turing
machine.
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I. Binary and ternary structures in physics

In this section we give several binary and ternary structures in physics. We shall

treat the following topics:

(1) Quark physics.

(2) Atomic physics.

(3) The basic problem on the space-time.

1. Quark physics

In the theory of elementary particles we can observe several binary and ternary

phenomena.
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(4) Particle and anti-particle.

(5) 3-generation in quarks.

(6) Mesons and baryons.

In Part II we shall be concerned with these structures in detail.

Fig. 1: Photon in quark physics.

Fig. 2: Ternary and binary structures of baryons and pions.

2. Atom physics

We know that atoms and molecules constitute with hydrogen H helium He and other

atoms. We shall find binary and ternary structures in generations of molecules.

The common understanding on the generations of atoms can be given as follows:

2.1. Binary generation

(7) Proton P and neutron n are created as stable particles.

(8) A combination of a proton and a neutron happens and deuterium is created.
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(9) Another combination of a deuterium and a proton is created and tritium is

obtained.

(10) A combination of a proton and tri-heavy hydrogen happens and a helicum

H4 is created.

(11) He is stable and it remains in the universe.

Fig. 3: From deuterium to helium.

2.2. Ternary generation

In the star another generation scheme starts and carbon 12C arises from helium 4He

by way of the construction of berylium 8Be:

Fig. 4: From helium to beryllium.

By these we have the following generations shown in Fig. 5 and Fig. 6.

2.3. Generation of the space-time

By this method we may expect to treat the fundamental problem of the space-time:

(12) How can we describe the birth of time? Haw can we describe the past and

the future?
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Fig. 5: Proton-proton chain.

Fig. 6: CNO cycle.

(13) How can we describe the birth of the space? How can we understand that

the space has three dimensions?

Penrose, Hawking and others have discussed these problems. We treat these prob-

lems in terms of the Turing machine and compare the results with their results [1, 2].

The daily experiences tell that the time has dimension 1 and the space has

dimension 3. We may discuss the space-time by Turing machine. We may imagine

the following process in the generation. This observation is similar to that done by

Penrose [1].

(14) At first the discrete time is born by the “beat of vacuum” with the frequencey

E = hν. The photons are created by this and the universe was born.

(15) Then the conjugation of the time created which might be connected to the

past. This was created by a push-down automaton.
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The future and the past can be made different in terms of the entropy. The big-

bang can be understood as the increase of the entropy. The past can be described

in terms of the decrease of the entropy. Hence we have a different conjugation in the

theory of special relativity:

t←→ −t.

The time in this discussion is similar to that the philosophy of E. Bergson [1].

(16) The creation of the space can be performed by the time. The distance can

be measured by the counting of the beats. When the time is filled, i.e. the time is

periodic and the period is determined.

Then the lower bound automaton starts and the dimensions are created. The

basic creation tells the dimension 3:

(x, y, z) .

(17) The mixture of the space and time happens and the special relativity can

be imagined.

II. The hierarchy structure in Turing machine

In this section we recall a hierarchy structure in Turing machine and find the back

around of the binary and ternary structure.

Hierachy structure

There exist 4 kind of the automatons in Turing machine, which are called types:

(18) Finite automaton (= L3).

(19) Push-down automaton (= L2).

(20) Linear bounded automaton (= L1).

(21) General Turing machine (= L0).

Then we can see the following facts:

Proposition 1.

(22) L3 j L2 j L1 j L0.

(23) A Turing machine belongs to one and only one type.

mmm-Words system

We consider the following system which is called m-words system:

L(m) = {an1an2 . . . anm|n > 0} .

We consider Turing machines which accept L(m) as acceptable sentences. In this

paper we identify the system with the Turing machine.
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(I) L(1)

L(1) is a finite automaton. Moreover, putting

˜L(k) = L(1)′ · L(1)′′ · . . . · L(1)(h) = {am1
1 am2

2 . . . amk

k |m1 · . . . ·mk > 0}

we have general finite automaton. The transition diagram of L(1) is given in Fig. 7.

Fig. 7: The automaton L(1).

(II) L(2)

L(2) is a push-down automaton. Hence we can see that L(2) ∈ L2. The important

fact is that

L(2) /∈ L3 and L(2) ∈ L2.

We can give several realizations of the automatons:

(24) The context free sentence

〈N,Ω, P, S〉 where N = {S}, Ω = {a, b}, P = {S → aSb, S → ab} .

Generation of sentence a2b2

1. S → aSb,

2. S → a(ab)b = a2b2.

(25) Push-down automaton

We give the transition diagram (Fig. 8). The detailed explanations are omitted.

Fig. 8: The push-down automaton L(2).
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Transition of aabb.
(q0,L0) (q1, A)

⇓ a ⇓ b
(qb, A) (q1, ε)

⇓ a ⇓ ε
(q0, AA) (qf ,L0)

⇓ b

(26) Turing machine

We give the Turing machine description. The basic idea can be described by the

following configuration (Fig. 9).

Fig. 9: The Turing machine automaton L(2).

1. We start from the first a and marked a′.

2. We proceed to the right to find the b and marked b′.

3. We proceed to the left and find a except a′ and mark a′.

4. We proceed to the right and find b (except b′) and marked b′.

The transition diagram is given in Fig. 10.

Fig. 10: The transition diagram for automaton L(2).
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Transition of abab.

(1) (aabb : q0)

⇓
(2) (a′abb : q0)

⇓ R
(3) (a′abb : q1)

⇓
(4) (a′ab′b : q1)

⇓ L
(5) (a′ab′b : q2)

⇓
(6) (a′a′b′b′ : q0)

⇓
(7) (a′a′b′b′ : q3)

⇓
(8) (a′a′b′b′ : qf )

(III) L(m) (m ≥ 3)

L(m) ∈ L1, L(m)/∈L2 .

The basic type of L(m)(m ≥ 3) is L(3). We can show that L(m) can be generated

by L(3). The Turing machine for {anbnan|n > 0} can be given as in Fig. 11.

Fig. 11: The automaton L(m), (m ≥ 3).
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Transition of aba.
(1) (abc : q0)

⇓ R
(2) (a′ba : q1)

⇓ R
(3) (a′b′a : q2)

⇓ L
(4) (a′b′a′′ : q3)

⇓ R
(5) (a′b′a′′ : q0)

⇓ R
(6) (a′b′a′′ : q4)

⇓ L
(7) (a′b′a′′ : qf )

Next we give the basic idea of the construction (Fig. 12).

Fig. 12: The basic idea of construction of the automaton L(m), (m ≥ 3).

From the action we can see that (1) The Turing machine is a lower bound au-

tomaton. (2) Replacing a in the third part with c, a′′ with c′′ respectively, we can

obtain the Turing machine for L(3) in a completely analogous manner. (3) We can see

easily that the Turing machine for L(m) (m ≥ 4) can be constructed in a completely

analogous manner. Hence we can see that L(m) is also a lower bound automaton.

(IV) General Turing machine

The Turing machine which does not belong to one of the above three types

belongs to general Turing machine. We notice the Turing machine which describes

mathematical operations “a+ b”. “ab” belongs to this type. This automaton is not

lower bound automaton. In fact we have an “overflow” in the tape:

|0| |
+)0| | |
− − −−
|00| 0
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III. Binary and ternary structures in Turing machine

In this section we introduce a concept of evolution in Turing machine and find the

binary and ternary structures in it [3, 4].

Evolution in m-words system

Here we introduce the concept of evolution of L(m) (m = 1, 2, 3). We consider

the evolution:

L(m−1) −→ L(m).

The embedding is given by

L(m−1)′ =
{
an1 . . . a

n
m−1a

k
m|n > 0, k > 0

}
= L(m) · L(1),

where X · Y implies the connection. Here we notice the following proposition:

Proposition 2. L(m) and L(m)′ have the same type. Then we have the following

sequence:

L(1) −→ L(2) −→ L(3) −→ . . . .

We call the evolution non-trivial when the following holds:

Li−1) and L(i) do not belong the same type of the Turing machine. Then we can

prove the following:

Proposition 3.

(27) L(1) → L(2) is non-trivial.

(28) X(2) → L(3) is non-trivial.

(29) L(M) → L(m+1) (m ≥ 3) is trivial.

Three generation of mmm-words system

Next we proceed to the generation of the system. Here we introduce a concept of

generations of evolutions in the systems. Putting

L(2)′ = {am1 an2an3 |m,n > 0} ,

L(2)′′′ = {an1an2am3 |n,m > 0} ,

we can see that L(2)′ ∈ L2, L(2)′′′ ∈ L2 and

L(3) = {an1an2an3 |n > 0} ,

L(3) =L(2)′ ∩ L(2)′′′.

We call these phenomena the generation of L(3) by L(2)′ and L(2)′′. Next we

consider the generation of L(4)

L(4) = {an1an2an3an4 |n > 0}.
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Then we have the following generation:

L̇(4) = L(3)′ ∩ L(3)′′

where

L(3)′ = {am1 an2an3an4 |m > 0, n > 0} ,

L(3)′′ = {an1an2am3 am4 |m > 0, n > 0} .

Here we want to make a strong stress on the following facts:

(30) L(3) = L(2)′ ∩ L(2)′′ has a generation jump, i.e.,

L(2)′, L(2)′′ ∈ L(2), L(3) /∈ L(2), L(3) ∈ L,

(31) L(4) = L(3)′∩L(3)′′ has no generation jump and keeps the type of the Turing

machine.

When the generation keeps its type we call it (type-)preserving generation. Then

we can prove the following:

Proposition 4. The generation L(m) = L(m−1)′ ∩ L(m−1)′′ is non-preserving for

m = 3 and preserving m ≥ 4. Hence L(m)(≥ 4) can be generated by L(3) successively.

On the basis of this proposition we can discuss the binary and ternary structure

in the nature. Namely we can prove the following:

Theorem I.

(32) Every Turing machine belongs to one and only one type: L0,L1,L2,L3.

(33) Two words system belongs to L2.

(34) Three-words system belongs to L1.

(35) m-words system can be generated by 3-words system for m ≥ 4.

Geometric understanding on 3-generation and reduction in mmm-words sys-

tem

In order to understand on the 3-generation we will treat it by use of geometry of

binary and ternary structures. We begin with the geometry of the binary. By use of

the association we can give the geometric understanding on the 3-generation:

3-generation is basic

By use of the triangulation of polygons we can understand that the triangle is

basic in our approach

Geometric understanding on 3-generation

We can express the 3-generation of m-words system as in Fig. 14 manner:

The association for higher degree polygons is completely similar.
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Fig. 13: The triangle is basic in our approach.

Fig. 14: L(4) ⇐⇒ L′(3) ∩ L′′(3).

V. Turning machine structures in particle physics

In this section we associate the field theory to the Turning machine. We shall find

the evolution structure in particle physics and give origins of “the binary structure

of mesons” and “the ternary structure of baryons”. Also we can show that a single

quark is confined at present and m-quarks (m ≥ 4) can be observed only in the

resonance of 2,3-quarks [2]. This will be discussed in Part II of the paper which will

appear separately.

1. Push-down automaton which is given by a bosonic field

At first we give an example which supports our basic idea on the association. We

choose a bosonic algebra which is generated by creation operator a∗ and annihilation

operator a satisfying the following commutation relation:

a∗ − a∗a = 1.

The bosonic field can be constructed by operating the creation operator in vac-

uum 〈0|:

Ψ(z) = 〈0|a∗,
Ψ2(z) = Ψ(z1)⊗Ψ(x2) = 〈0|a∗a∗ = Ψ(x1)a∗,

. . . ,

Ψn(z) = Ψn−1(x)a∗,

. . . ,
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Next we consider the conjugate vacuum |0〉 which satisfies the following condi-

tions:

Ψ∗(κ1) = a|0〉,
Ψ∗2(κ) = aΨ∗(κ1) = a2|0〉,

. . . ,

Ψ∗n(κ) = aΨ∗n−1(κ) = an|0〉,
. . . ,

Here we assume that

(36) 〈0|0〉 = 1,

(37) 〈0|a〉 = 0, a∗|0〉 = 0.

Then we can construct the bosonic field as follows:

Ψ(x1)⊗Ψ(x2)⊗ . . .⊗Ψ(xh)

is an n-particle field. Then we have

a∗Ψ(x1)⊗ . . .⊗Ψ(xn) = Ψ(x1)⊗ . . .Ψ(xn+1),

aΨ(x1)⊗ . . .⊗Ψ(xn) = Ψ(x1)⊗ . . .⊗Ψ(xn−1).

When we consider a Hamiltonian operator then we can consider the quantum bosonic

field in physics. We can prove the following

Proposition 8. By the following associations we can obtain the push-down automa-

ton (Fig. 15):

1. 〈o| =⇒ c

2. |o〉 =⇒ S

3. Ψ(x1)⊗ · · · ⊗Ψ(xn) =⇒ c a1 a2 · · · · · · an S

4. a∗Ψ(x1)⊗ · · · ⊗Ψ(xn) =⇒ c a∗1 · · · · · · a∗n a∗n+1 · · · S

5. aΨ(x1)⊗ · · · ⊗Ψ(xn) =⇒ c a∗1 · · · · · · a∗n−1 · · · S

Fig. 15: The push-down automaton.

Here, associating the bracket:

〈0| ⇒ ′′ ⊂′′
(

Push down

stack

)
, |0〉 ⇒ ′′ ⊃′′

(
Pop up

stack

)
we can obtain the push-down automaton. The acceptable sequences can be obtained

by

〈0|X|0〉 6= 0.
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2. The basic idea on associating the Turing machine
to the field theory

We begin the symmetrization of the n-particle system and we shall find the asso-

ciation of these fields to L(m). For this we consider the particle systems which are

generated by m (m ≥ ε) kinds:

{a∗1, a1}, . . . {a∗m, am} :

〈0|a∗ni1 . . . a
∗n
im = Ψi1(x1)n . . .Ψim(xm)n.

Next we consider the symmetrization of the system:

〈0|a∗n1 . . . a∗nm |S =
∑ 1

m!
〈0|a∗i1 . . . a

∗
im .

Then we set

〈0|a∗n1 . . . a∗nm |S ⇒ a∗n1 . . . a∗nm ,

and we obtain the desired association. Here we have to pay attention to the fields.

For the case of bosonic fields the symmetrization causes no problem and its quite

natural. For the case of fermionic field we have:

a∗i a
∗
j + a∗ja

∗
i = aiaj + ajai = 2δij .

Hence we have to replace the symmetrization with the antisymmetrization:

〈0|a∗i . . . a∗nn |A =
∑ 1

m!
σ

(
i1 . . . im
1 . . .m

)
〈0|a∗i1 . . . a

∗
im.

Taking these facts into account we associate the fields to the type of Turing machine.

3. The automaton type

We take a creation operator a∗ and the one-side vacuum 〈0|, and generate a field:

〈0|, 〈0|a∗(= Ψ1), 〈0|a∗2(= a∗Ψ1)

= Ψ1(x)⊗Ψ(x2), . . . , 〈0|a∗N = Ψ(x1)⊗ 〈Ψ(xN ).

Then we can associate the automaton with the following transition diagram:

Fig. 16: The automaton type transition diagram.
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We can generalize the field theory which is generated by several creation operators:

a∗1, a
∗
2, . . . , a

∗
m.

4. The push-down automaton type

As we have seen in Sect. I when we introduce the dual vacuum |0〉 and the annihi-

lation operator we can define the push-down automaton. As we have seen we can

identity the bracket sequence with this field:

a∗ ⇐⇒ (, a⇐⇒).

Hence, we have for example:

a∗a∗a a∗aa⇐⇒ ((.)( )) .

When we wish to generalize the field generated by a single element a∗ and its conju-

gate element a to that which is generalized by several elements a∗1, . . . , a
∗
m, a1, . . . , am.

We may Dyke languages to these fields.

5. The linear bonded automaton

Next we proceed to the generation of baryons. At first we notice the basic facts on

baryons:

(38) Any baryon constitutes three quarks.

(39) Any quark a color. The color constitutes the kinds G.R.Y. (Three colors).

(40) Baryons can be changed by week int-action and others (Fig. 17).

Fig. 17: Generation of baryons.

We shall show these properties by use of a linear bounded automaton. Usually

we do not assume that the number of particles is bounded. But this is not accept-

able from the cosmology because the size of the universe is finite at present; hence

its total number is finite. Taking this fact into account we can int-reduce a lin-

ear bounded automaton. Namely, we consider the Turing machine which does not

change its length we can consider the linear bounded automaton. This automaton

can operate when the size of tapes is fixed. We need not produce a blank cell. We

may understand that this system starts to “rearrange” by “interchange” or “mix”

in the fixed particles.
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6. General Turing machine

The particle system, which has a fixed number of particles and the universe (or

ambient space) is stable, has the automaton of type (iii). When the universe spreads

then we can find a new empty space and create a new particle. Then we may expect

that a new Turing machine starts to operate. Taking the fact that Turing machines

can describe the total finite mathematics into account, we can describe any particles

which can not realize real physical particles.

Hence, it might be quite natural that physical particles are not described by the

general Turing machine.
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STRUKTURY BINARNE I TERNARNE W FIZYCE I

STRUKTURA HIERARCHICZNA MASZYNY TURINGA W FIZYCE

S t r e s z c z e n i e

Przypominamy podstawowe fakty o maszynie Turinga i obserwujemy jej hierarchiczna̧
strukturȩ. Przyporza̧dkowuja̧c cza̧stkȩ i anty-cza̧stkȩ automatonowi obniżania, a trzy kwar-
ki liniowemu ograniczonemu automatonowi, uzyskujemy model fizyki kwarków w terminach
maszyny Turinga

S lowa kluczowe: struktura binarna, struktura ternarna, uk lady cza̧stek, pole bozonowe, typ
automatonu obniżania, algebry ternarne i kubiczne



PL ISSN 0459-6854

B U L L E T I N
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1. Introduction

The first clear experimental indication of magnetoresistance (MR) in ferromagnetic

striped domain structure was observed by Allen and his coworkers [1] in a homoge-

nous magnetic system. The authors investigated MR behavior in a thin layer of

cobalt, considered as a function of an applied magnetic field. The authors emphasize

the quantitative agreement between the domain walls and a trilayer.

In order to calculate MR in the domain structure we consider the organization

of domains structure in thin films. In 1935 Landau and Lifschitz [2] showed that

the existence of domains is a consequence of energy minimization. A single domain

sample has associated with it large, magnetostatic energy, but the breakup of the

magnetization into localized regions-domains, providing for flux closure at the ends

of the specimen, reduces the magnetostatic energy. The decrease in magnetostatic
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energy is greater than the energy necessary to form magnetic domain walls, then

multi-domain specimens will arise.

The thin film is divided into n monoatomic layers labeled by ν in the direction

of y perpendicular to the surface [3]. The position of lattice site in the plane (x, z)

is given by vector ~j. We suppose that the film has dimensions Lx, Ly, Lz.

The experimental studies of the atomic spin structure of phase domain walls in

the antiferromagnetic Fe monolayer on W (001) by means of spin-polarized scanning

tunneling microscopy show that the domain wall width is only to 6–8 atomic rows [4].

This fact has significance from the point of view of feature applications.

Let us consider the direction of the easy axis lying in the plane of the sample. In

the case where the uniaxial anisotropy is sufficiently large, we can expect that the

domain structure observed experimentally has a form of stripe structure with the

stripe magnetized parallel and antiparallel to easy magnetization axis. The Hamil-

tonian for the considered structure can be written as:

H =
∑

m〈νj,ν′j′〉

H

(
ν′j′

νj

)
c+νjmcν′j′m + I

∑
νj

c+νj↑cνj↓

+
1

2
(gµB)2

∑
αβ

∑
νjν′j′

Nαβ
νjν′j′S

α
νjS

β
ν′j′ −K

∑
νj

〈SZνj〉SZνj .(1)

The Hamiltonian described by (1) includes four terms: The hopping term, the

intra-atomic Coulomb interaction, the term corresponding to the magnetic dipolar

interaction, and the energy of the uniaxial anisotropy. The symbol I denotes the

intra-atomic Coulomb integral, while K represents the uniaxial anisotropy constant.

Moreover, Hamiltonian (1) describes the magnetic properties for the uniaxial thin

films magnetized homogenously. In order to find the effective Hamiltonian for thin

film with the striped structure we use the new operators b+rkm and brkm by means

of the following transformations:

c+rkm =
∑
m′

o+rk

(
m′

m

)
b+rkm′

crkm =
∑
m′

ork

(
m′

m

)
brkm′(2)

and for spin:

Sαrk =
∑
α′

Rαα
′

rk Sα
′

rk(3)

where the elements of Rαα
′

rk are the components of the rotation matrix. The operator

O+
rk is defined as:

O+
rk =

(
ei

ϕrk
2 cos ϑrk

2 e−i
ϕrk
2 sin ϑrk

2

−e−i
ϕrk
2 sin ϑrk

2 ei
ϕrk
2 cos ϑrk

2

)
.(4)
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Moreover, the following relation is fulfilled:

Ork

(
m′

m

)
=

(
O+
rk

(
m′

m

))∗
.(5)

The angles ϕrk and ϑrk correspond to the rotations in spherical coordinates, and

ϕrk to the rotation in the plane of the layer, while ϑrk is responsible for deviation

of local z axis with respect to the global system. The transformations lead to the

following Hamiltonian for thin film with domain structure [5]:

H =
∑
νj,ν′j′

H

(
ν′j′

νj

)
c+νjmcν′j′m

[(∑
m

b+νjmbν′j′m

)
cos

ϑνj − ϑν′j′

2

+(b+νj↑bν′j′↓ − b+νj↑bν′j′↓) sin
ϑν′j′ − ϑνj

2

]
+I
∑
νj

nνj↑nνj↓ +
1

2
(gµB)2

∑
αβ

∑
νjν′j′

Nαβ
νjν′j′R

αα′

νj R
ββ′

ν′j′S
′α′

νjS
′β′

ν′j′(6)

−K
∑
νj

〈S′Zνj〉 cosϑνj

(
S′
Z
νj cosϑνj + S′

x
νj sinϑνj

)
where:

nνj↑ = b+νjmbνjm.(7)

For the rotation around the y axis perpendicular to the surface of the film, we can

write:

Rνj =

 cosϑνj 0 − sinϑνj
0 1 0

sinϑνj 0 cosϑνj

 .(8)

In the molecular field approximation, the Hamiltonian (6) can be rewritten as:

〈H〉 = 〈H0〉+ (gµB)2
∑
νjν′j′

Nαβ
νjν′j′〈S

′Z
νj〉〈S′

Z
ν′j′〉 −K

∑
νj

〈S′Zν′j′〉2 cos2 ϑνj

+
∑
νj,ν′j′

H

(
ν′j′

νj

)[(∑
m

〈b+νjmbν′j′m〉

)
cos

ϑνj − ϑν′j′

2
(9)

+
(
〈b+νj↑bν′j′↓〉 − 〈b+νj↓bν′j′↑〉

)
sin

ϑν′j′ − ϑνj
2

]
.

In the last expression, 〈H0〉 represents the part of Hamiltonian H which is not

dependent on the angle of ϑνj , moreover:

〈b+νjmbν′j′m〉 =
∑
τh

TmνjτhT
m
ν′j′τ ′h′〈b+τhmbτhm〉δmm′(10)

and

Nνjν′j′ =
∑
αβ

Nαβ
νjν′j′R

αz
νjR

βz
ν′j′ .(11)
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2. Magnetoresistance of striped structure in thin film

In order to find the magnetoresistance in thin layer, we consider a thin magnetic

film in which the angle distribution of magnetization is homogenous. In first ap-

proximation the domain wall is omitted and the domains are treated as ellipsoids

(Fig. 1).

Fig. 1: Domain structure of a magnetic thin film with the 0 width of domain wall.

The mean value of the Hamiltonian given by Eq. (9) for thin layer can be rewritten

in the form of:

〈H〉 = 〈H0〉+
V

4Lr

Lr∫
0

L(ϑ(r))dr,(12)

where 〈H0〉 represents part of 〈H〉 which is independent of the angle ϑ in the plane

of the layer. The volume of the considered sample is equal:

V = Na3 = NxNyNza
3,(13)

where a is the lattice constant, N is a number of lattice sides, while Lr = aNr
represents the size of layer in direction r (r = x or y). The functional L(ϑ(r)) has

form:

L (ϑ(r)) =

α(dϑ
dr

)2

+
K

a3
sin2 ϑ+

gµ2
B

a6

∑
j′r

Nνjν′j′

 ,(14)

where

Nνjν′j′ =
∑
αβ

Nαβ
νjν′j′R

αz
jr R

βz
jr .(15)

The mean value of the Hamiltonian can be obtained by taking into account demag-

netized field generated by domains. In case of ellipsoidal domains described here,

the demagnetizing coefficients are as follows:

Nxx = 0, Nyy = 0, Nzz =
π2

2V

DLy
L2
z

,(16)
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where D is the width of domain, and moreover the following conditions are fulfilled:

cos2 ϑ(r) = 1, sin2 ϑ(r) = 0.(17)

The functional L(ϑ(r)) can be rewritten as:

L(ϑ(r)) =

(
α

(
dϑ

dr

)2

+
gµ2

B

a3
V Nzz

)
.(18)

And taking into account relation (16), we obtain:

L(ϑ(r)) =

(
α

(
dϑ

dr

)2

+
π2(gµB)2DLy

2a3L2
z

)
.(19)

If in the direction x, the sample includes s domains, then the mean value of the

Hamiltonian can be written as:

〈H〉 = 〈H0〉+
V

4Lx

 Lx∫
0

α

(
dϑ

dx

)
dx+

Lr∫
0

π2(gµB)2DLy
2a3L2

z

dx

 .(20)

The energy of the domain on the unit area of domain wall s depends on the angle

distribution of magnetization and can be expressed as:

σ =
α

s

Lr∫
0

(
dϑ

dr

)2

dr.(21)

Introducing the last relation in 16, we obtain in the considered case:

〈H〉 = 〈H0〉+
N

4

(
− a

3

D2
σ +

π2(gµB)2Ly
2a3L2

z

)
.(22)

In order to calculate D, we minimalize the last equation and put d〈H〉/dD = 0, this

leads to the results for D:

D =
π2(gµB)2Ly

2a3L2
z

.(23)

The last relation allows us to estimate the critical thickness of layer for which

appears in the domain. For Lx = Ly and D = Lz we obtain:

Lcrit
y =

2

π2

(
a3

gµB

)2

σ.(24)

3. An influence of the external magnetic field

When we applied an external magnetic field to the domain structure given on Fig. 2a,

in first approximation, we suppose the thickness of the domain wall equals 0. The

thickness of domains is denoted by D+ and D−. The thickness of D+ and D− can

expand or narrow under the influence of an external magnetic field H in direction z.

When the magnetic field is 0, then D+ = D−. When the critical magnetic field is

applied, the domain wall is shifted to the edge of the sample, and we have D− = 0

and D+ = 2D (Fig. 2b).
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Fig. 2: The influence of an external magnetic field on the domain structure: a) without
external magnetic field; b) when the critical magnetic field is applied.

The influence of an external magnetic field on the domain structure was consid-

ered in many papers [6–8]. Here we consider the influence of a longitudinal external

magnetic field applied to a thin film with the stripe domain structure. The cal-

culations procedure used for the bulk structure [2] can applied in this case. The

Hamiltonian should be completed by a term describing the interaction of the spins

in own system, with the external field Hz which is the Zeeman type field, and can

be written in the form of:

〈HH〉 = −1

2
gµBH

z cosϑ(x)(25)

and the functional L(ϑ(x)) is:

L(ϑ(x)) = α

(
dϑ

dx

)2

+
K

a3
sin2 ϑ(x) +

(gµB)2

a3
NNzz cos2 ϑ(x)

−gµBH
z

2a3
cosϑ(x).(26)

Taking into account the conditions (16), we obtain the equation for the determination

of the demagnetization coefficients:

(gµB)2

a3
NNzz =

(gµB)2

a3
N
π2

2V

Ly
L2
z

D± =
(gµB
a3

)2 π2

2

Ly
L2
z

D±.(27)

Minimizing the energy of functional given by (26), we obtain:

L =
1

Lx

Lx∫
0

L(ϑ(x))dx =
σ

D
+

1

2
σ0
Ly
L2
z

(D+)2 − (D−)2

2D

−q (D+)2 − (D−)2

4D2
,(28)
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where the parameters in (28) are given as:
σ0 = π2

(gµB
a3

)2
,

q =
1

2
gµB

Hz

a3
.

(29)

As we can introduce D± = D(1 ± ε) and substitute this term in Eq. 28, we can

obtain:

L =
σ

D
+

1

2
σ0
Ly
L2
z

(
D + ε2D

)
− qε.(30)

In order to obtain the value of ε, we minimalize the last expression with respect to

ε:
dL

dε
= σ0

Ly
L2
z

Dε− q.(31)

And putting dL/dε = 0, we finally obtain:

ε =
1

2π2

(
Hz

gµB

)
L2
za

3

LyD
.(32)

From last expression it is easy to obtain the value of a critical field. When the

critical field is applied, then D− = 0 and D+ = 2D, and this fact leads to the value

of critical field given as:

Hz
crit =

2π2gµBLyD

L2
za

3
.(33)

4. Magnetoresistance of strip structure in thin films

In order to find the magnetoresistance in a thin layer, we consider a thin magnetic

film in which the angle distribution of magnetization is homogenous. The systems

composed of FM layers and an NM spacer correspond to the stripe domain structure.

The experimental picture of the observed structure can be represented in a model

of parallel domains with variable magnetization [9]. In Fig. 3 the model structure of

stripe domains is presented with a width D and the width of the domain walls equal

δ, cut into direction of n in the domain structure.

In order to find MR, let us consider the stripe domain structure with zero width of

domain walls, through which the current flows perpendicular to the magnetization.

Moreover, the magnetic field is applied in the plane (see Fig. 4).

In an analogy to the description of GMR in trilayers, we used the model of

the resistor network which corresponds to different configuration of spin-up and

spin-down electrons, and the width of the domain. We consider the case where the

magnetization is parallel to the applied magnetic field. The width of the domain

expanding under an influence of the magnetic field is denoted by D+, while the

domain narrowing is denoted by D−. The value of the resistors shown in Fig. 4b is

given as:
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Fig. 3: The model representation of the stripe domain structure.

Fig. 4: a) Domain structure through which the current flows; b) the equivalent resistor
network of the considered system.

R+
↑ = ρ↑

D+

dLz
, R+

↓ = ρ↓
D+

dLz
,

R−↑ = ρ↑
D−

dLz
, R−↓ = ρ↓

D−

dLz
,

(34)

The total resistance of network in Fig. 4b can be obtained as:

1

R↑↓
=

1

R+
↑ +R−↓

+
1

R+
↓ +R−↑

(35)
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Fig. 5: a) The domain structure where the critical magnetic field is applied; b) the corre-
sponding resistor network.

and taking into account the relations (34) is equal:

1

R↑↓
=

dLz
D+ρ↑ +D−ρ↓

+
dLz

D+ρ↓ +D−ρ↑
.(36)

Taking into account the relation D± = D(1± e) we obtain:

1

R↑↓
=
dLz
D

2(ρ↑ + ρ↓)

[(ρ↑ + ρ↓) + ε(ρ↑ − ρ↓)] [(ρ↑ + ρ↓)− ε(ρ↑ − ρ↓)]
.(37)

Denoting:

∆ρ =
ρ↑ − ρ↓
ρ↑ + ρ↓

,(38)

the relation (37) can be rewritten as:

1

R↑↓
=
dLz
D

2(ρ↑ + ρ↓)

(ρ↑ + ρ↓)2(1− ε2(∆ρ)2)
=
dLz
D

2

(ρ↑ + ρ↓)(1− ε2(∆ρ)2)
.(39)

Another interesting case should be considered – one where the critical magnetic

field is applied (see Fig. 5) and the domain wall is shifted on the edge of the sample,

and the value of resistance for this case can be given as:

1

R↑↑
=

1
2D
dLz

ρ↑
+

1
2D
dLz

ρ↓
=
dLz
D

(ρ↑ + ρ↓)

2

1

ρ↑ρ↓
.(40)

The value of MR we defined as:

MR =
R(H)

R(H = 0)
(41)
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and leads to the following results:

MR =
R(H)

R(H = 0)
= 1− ε2(∆ρ)2.(42)

The behavior of MR as a function of an applied magnetic field for Fe is presented

in Fig. 6.

Fig. 6: Magnetoresistance of Fe versus an applied magnetic field.

The result obtained for MR is analogical to the case of a trilayer comprising

two FM layers separated by a NM film. The behavior of GMR in multilayers was

investigated experimentally by P. Grünberg [6] and A. Fert [5]. The experimental

curve of GMR exhibits similar behavior as a magnetic field is applied to the sample.

5. MR of the stripe domain structure with domain wall of
thickness δ

In the next part, we find the MR of the stripe domain structure, with domain wall

of thickness δ, in which the current flows perpendicularly to the magnetization. The

schematic illustration of the considered system is presented in Fig. 7.

By analogy to our earlier considerations, D+, D− are the thickness of domain

walls with different orientation of magnetization, while DW is the thickness of do-

main wall at the border between domains D+ and D−. The schematic resistor net-

work is presented in Fig. 8.
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Fig. 7: Domain structure with none-zero domain wall for two different types of walls:
a) Bloch wall and b) Néel wall .

Fig. 8: The resistor network for two domains separated by a domain wall for an antiparallel
configuration of two adjacent domains (RW is a resistance of the domain wall).

In the light of our earlier considerations for two domains with different magnetic

moment orientations, the resistance for the considered system can be introduced as:

1

ρ↑↓
=

D

ρ↑(D +D+) + ρWDW + ρ↓D−
+

D

ρ↓(D +D+) + ρWDW + ρ↑D−
,(43)

which can be rewritten as:

1

ρ↑↓
=

1

ρ↑(1 + ε) + ρW
DW

D + ρ↓(1− ε)
+

1

ρ↓(1 + ε) + ρW
DW

D + ρ↑(1− ε)
.(44)

For parallel orientation of magnetic moments in domains, we have:

1

ρ↑↑
=

1

2ρ↑ + ρW
DW

D

+
1

2ρ↓ + ρW
DW

D

,(45)

ρ↑↑ =
4ρ↑ρ↓ + ρ2W

D2
W

D + 2(ρ↑ + ρ↓)ρW
DW

D

2
(
(ρ↑ + ρ↓) + ρW

DW

D

) (
ρ↑ + ρ↓ + ρW

DW

D

)
.(46)



72 K. Warda, D. Baldomir, M. Pereiro, J. E. Arias, V. Pardo, and J. Botana

The value of MR is given by:

MR = 1− ρ↑↑
ρ↑↓

=
R(H)

R(H = 0)
(47)

and finally this leads to the result:

MR = 1− (ρ↑ − ρ↓)2ε2(
ρ↑ + ρ↓ + ρW

DW

D

)2 .(48)

The calculations of MR versus an applied magnetic field for domain structure

comprising two domains separated by domain wall are shown in Fig. 9. For calcula-

tions we used the following values of parameters: the thickness of layer Ly = 10 nm,

the length of sample Lz = 4µm.

Fig. 9: MR for a structure including two domains separated by a domain wall versus an
applied magnetic field for 3 selected values of parameter y = ρW

ρ↑

DW
D

.

An interesting behavior of the Fe layers was observed in Zr/Fe/Zr trilayer struc-

tures [10] which behave as an array of ferromagnetic, interacting Fe clusters, below a

thickness around 16 nm. Moreover, the considered trilayer exhibits the thickness de-

pendence of the room temperature coercivity, which can be interpreted as evidence

for a switch from a Bloch domain wall structure to a Néel interacting cluster behav-

ior, as the Fe layer thickness is decreased below 16 nm. This effect can be related to

the appearance of an Fe-Zr amorphous phase at the grain boundaries which influ-
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ence progressively on the magnetization process when the magnetic layer thickness

is reduced.

The evolution of the domain structure was investigated experimentally by means

of Polar Kerr Microscopy, in a perpendicularly magnetized, Fe/Au multilayer struc-

ture, showing strong dependence between the character of the transition with the

interlayer coupling type and the orientation of magnetization in the adjacent sub-

layers [11].

It was demonstrated experimentally and theoretically that DW motion in fer-

romagnetic films, with perpendicular anisotropy grown on a stepped substrate [12]

can be tuned by modifying the underlying step density of the supporting substrate.

It is worth of emphasizing that the dynamics of magnetic domain walls in such

films appear to be spatially anisotropic and strongly dependent on the step density.

The domain wall velocity in very thin layers is controlled by the exchange inter-

action of domain walls. This fact makes this phenomenon interesting for magnetic

nanodevices.

Moreover, it is worth of emphasizing here that the ultrathin magnetic films with

uniaxial anisotropy discussed here have been intensively studied as materials promis-

ing for applications, e.g. as magnetic storage media with perpendicular recording of

information [13].
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MAGNETOOPÓR W CIENKICH WARSTWACH ZAWIERAJA̧CYCH

STRUKTURȨ DOMENOWA̧

S t r e s z c z e n i e

Wykazalísmy, iż magnetoopór struktury domeny wystepuja̧cej w cienkiej warstwie że-
laza zależy od wzglȩdnego stosunku szerokości ściany domeny oraz wielkości próbki.
Ponadto pokazano, że magnetoopór w funkcji przy lożonego zewnetrznego pola magnety-
cznego ma podobne zachowanie jak GMR w uk ladzie trójwarstwy.

S lowa kluczowe: magnetoopór, cienka warstwa, struktura domenowa, ściana domenowa,
magnetyzm
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DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE  LÓDŹ
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This article describes several approaches to physical processes of energy transfer in the

context of everyday life experiences that can be used in the teaching process of this field
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1. Introduction

1.1. Sustainable Development (SD)

The great changes of the last decades have shown the need for adapting developments

that takes into account social and environmental issues. These kinds of developments

were defined as sustainable. One of the generally accepted definitions of sustainabil-

ity is “a development that meets the needs of the present without compromising the

ability of future generations to meet their own needs” (WCED, 1987). Sustainability

as an academic field has become a basic structure in university curricula. It has been

integrated in academic programs from Harvard and Arizona State University to the
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Technical University of Catalonia and the University of Tokyo (Wick, Withycombe &

Redman, 2011). Agenda 21 is the document resulting from the United Nations Con-

ference on Environment and Development (UNCED), also called the Earth Summit,

held in Rio de Janeiro, Brazil in 1992. As McKeown and Hopkins (2003) emphasize,

“Agenda 21 calls for education in every chapter. Chapter 36 of Agenda 21, ‘Promot-

ing Education, Public Awareness, and Training’, specifically identifies four major

thrusts: (1) improving the quality of and access to basic education, (2) reorienting

existing education to address sustainable development, (3) developing public under-

standing and awareness, and (4) training. In addition, sustainability, and therefore

ESD, is commonly thought to involve and address three realms: environment, society,

and economy”. Charles Hopkins was involved in drafting Chapter 36 of Agenda 21.

He noticed a core shift in intent between The UN Conference on the Human Envi-

ronment (held in Stockholm in 1972) and the Rio conference (McKeown & Hopkins,

2003). The overall intent had shifted from the protection of the environmental and

the reduction of pollution to encounter the needs of the environment and the society.

Education for Sustainable Development (ESD) has become a very important issue

recently in the education of students worldwide, because it offers knowledge, skills,

attitudes and values which are necessary to ensure a sustainable future for humanity

at local and global levels. The decade 2005–2014 was named by the United Nations

“Decade of Education for Sustainable Development” and UNESCO took a leading

role in this effort. The scarcity of the major resources as food, energy, clean water

etc. forces for measures to ensure the sustainability of life on our planet.

Sustainable Development (SD) refers to a development, which meets the current

needs of the society without compromising the needs of future generations (World

Commission on Environment and Development (WCED 1987, p43). This definition

recognizes the importance of the environment and the need of society for growth

(McKeown & Hopkins, 2002). SD is trying to create sustainability of the environ-

ment, the society and the economy. The importance of education for SD has been

pointed out by bodies such as UNESCO (2002, 2004). UNESCO envisioned a world

where everyone has the opportunity to benefit from education and acquire the values,

behaviors and lifestyles that are necessary for a sustainable future and positive social

transformations (UNESCO 2004, p4). In addition, education was a priority for the

“Strategy for Education for Sustainable Development” (UNECE 2005), because it

can develop and strengthen knowledge, skills and values that will enhance people of

all ages to assume responsibility for creating and gaining a sustainable future (ibid).

Although SD is a concept that has been discussed widely, it can be accessed and

interpreted in many ways, depending on one’s viewpoint, such as economic activity,

technological approach or the relationship between the communities and the general

economic context (Huckle 1996; O’Riordan & Voisey 1998; Fien & Tilbury, 2002).

This variety of approaches leads to a number of trends and paradoxes reflected in

the concepts and pedagogy of ESD (Scott & Gough 2003, Scott 2005). ESD is not

just an innovation that can be adapted to the educational system, but a continuing
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process of pedagogical transformation (Fullan & Ballew 2001). ESD is a very impor-

tant issue for the education of pupils worldwide because it offers knowledge, skills,

attitudes and values necessary to ensure a sustainable future for humanity at the

local and global level.

ESD includes Environmental Education (EE) but is essentially a broader ap-

proach (Reid 2002, McKeown & Hopkins 2003). ESD has its roots in EE, but goes

beyond it (Bolscho & Hauenschild 2006), including issues related to reducing risks

from disasters, cultural diversity, poverty reduction, gender equality issues, health

promotion, peace and security and sustainable urbanization (UNESCO, 2004). There

is plenty of contemporary literature on EE or on ESD, although according to Pavlova

(2013) the similarities and differences between EE and ESD vary with regions and

countries nowadays, as well as during the last 10, 20 or 30 years and, will continue

to do so in the future. Pavlova (ibid) concludes that the EE and ESD should not

only be evaluated one against the other, but on an independent, transformative ed-

ucational reference system, that is, if there are qualities to lead to a transformative

education.

ESD is the practice of learning how to manage to have global and local sus-

tainable societies. Various approaches for ESD encourage people to understand the

complexity and synergies among the issues that threaten the sustainability of our

planet. In addition, through ESD students are encouraged to understand and eval-

uate their own values and those of the society they live in, within a sustainable

framework.

Using science as a way of thinking and technology as the basic tools of solving

problems gained a significant role in many sustainability subjects. The focus on solu-

tion paths through science and technological alternatives can overcome the obstacles

to immediate action (Sarewitz et al, 2010).

In this paper, we will describe the method that was used to design and develop

simulations that model everyday issues, mainly examples of heat transfer processes.

These simulations are components of an educational framework designed to motivate

students to think and act in a sustainable way. It is a Problem Oriented Project Based

Learning (POPBL) environment, which enhances users to have an active role in the

learning process, by using a variety of tools, such as LMS (Learning Management

System) platforms, simulations, real time remote experiment and comprehend heat

transfer mechanisms in various scales, such as understand the process of cooking,

inquire the facts that affect the internal temperature of a house or the concept of

low or zero energy houses.

2. Method

We designed, developed and embedded user-friendly simulations referring to every-

day life phenomena of heat transfer mechanisms, such as conduction, convection, and

radiation. These simulations were built using the program Energy2D (Xie, 2010). It
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is a Computer-aided engineering (CAE) system for teaching various topics of science

and engineering through virtual experiments, offering the possibility of experimen-

tation, variation, and designing an experiment.

Energy2D was created in 2010 by Charles Xie (2012), a physicist working at the

Concord Consortium based in Concord, Massachusetts, USA. Xie invented a semi-

Lagrangian McCormack method to approximately solve the Navier-Stokes equation.

The performance of this solver is comparable to Jos Stam’s unconditionally stable

fluid solver, which cannot be used in open-source projects, because a large com-

pany claims it as part of a pending patent. Although the McCormack solver is not

unconditionally stable, it is capable of simulating turbulent flows (higher Reynolds

number) without introducing vorticity confinement (Xie, 2010). In the mathematical

analysis below, we will describe heat flux and airflow equations used by Energy2D,

to understand the basics of their solution.

3. Mathematical analysis of Enegry2D models

3.1. Studying heat flux

The simulations are models for representing heat flux through heterogeneous media

and fluids. These models are based on solving heat and fluid equations using numer-

ical methods. According to Xie (2012), assuming the phenomenon where there is a

heat source and energy-heat diffuses through media – material and air in a three

dimensional space, than based on energy consumption, the energy that has been

convected (transferred through materials and fluids in general) equals the energy

that has been advected (by macroscopic molecular motion) plus the energy, that has

been conducted (heat transfer from energetic to less energetic particles due to an

energy gradient). The following partial differential equation describes the above in

the most sufficient way:

ρc

[
∂T

∂t
+∇ · (vT )

]
= ∇ · [k∇T ] + q,(1)

where, k is the thermal conductivity, c is the specific heat capacity, ρ is the density,

v is the velocity field, and q is the internal heat generation which can be thought as

an external force.

Equation (1) can be solved numerically using Finite Difference Time Domain

(FDTD) methods. An implicit FDTD method can be used to achieve better nu-

meric stability and using the relaxation method the equation can be solved. The

boundary conditions that have been used are the Dirichlet and Neumann boundary

conditions for partial differential equations. In the Dirichlet boundary condition, the

temperature is fixed at the boundary and in the Neumann boundary condition, the

flux is fixed at the boundary (Xie, 2010c).
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3.2. Airflow and Navier-Stokes equations

Navier Stokes equations are the most common equation that are used to model fluid

dynamics. They are named after Claude-Louis Navier and George Gabriel Stokes,

and are used to describe the motion of viscous fluids. These equations are character-

ized as balanced equations. They are based on Newton’s second law applied to fluid

motion and on the assumption that the stress in the fluid is the sum of a diffusing

viscous term, which is proportional to the gradient of velocity, and a pressure term,

and are therefore describing viscous flow.

The Navier-Stokes equations found many applications in a wide range of scientific

fields. In meteorology it has been a useful tool for weather-forecasting and prediction

of storms (Shapiro, 1993). They have also been applied in the study of the ocean

circulation systems and ocean currents (Marshall et al, 1997). The study of water

flow in different kind of pipes is of great significance in the field of engineering (Ward-

Smith, 1980). Aerodynamic design is a field where the Navier-Stokes equation is very

useful and it has been used for aerodynamic shape design optimization (Nielsen &

Anderson, 1999) as well as for the study of flying mechanisms in living creatures

(Liu & Kawachi, 1998). An application in biological systems, is to use of the Navier-

Stokes equation for the study of blood flow in the heart (Perkin, 1977) and vessels

(Perktold & Rappitsch, 1995). The coupling between the Navier-Stokes equation and

the Maxwell equation has been used to model and study magnetohydrodynamics

(Gerbeau, 1998).

Studying the airflow as an incompressible Newtonian fluid and its contribution

to the convective effect and to natural convection, it can be described through the

following form of the Navier Stokes equation:

∂v

∂t
= a∇2v − (v∇)v −∇p+ f ,(2)

where v is the velocity vector, a is the kinematic viscosity, p is the pressure, and

f is the body force such as gravity or buoyancy. The first term on the right-hand

side describes the diffusion of momentum, and the second term describes advection.

Equation (2) can be solved, according to Xie (2010d), by decomposing it in two

steps, the diffusion and the advection step, studying it separately and still trying to

satisfy the principle of conservation of mass in each step. Furthermore:

– the diffusion step
∂v1

∂t
= α∇2v1 + f(3)

can be solved using a relaxation method as in the case of the heat equation above;

– the advection step
∂v2

∂t
= −(v1 · ∇)v2(4)

can be solved using the MacCormack method.

Finally, each step should be imposed by the continuity condition ∇ ·v = 0. Ana-

lyzing the above to a discretized form, based on the Helmholtz decomposition, and
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applying on it the gradient operator, it becomes the Poisson equation. By discretiz-

ing again, this equation can be solved using the relaxation method with the iteration

above until convergence is reached.

3.3. Developing custom simulations

Our goal was to develop simulations that can model phenomena of the everyday life

to which a user can relate to. That’s why concepts are based on studying heat prop-

agation through familiar materials and concepts. Energy 2D is a java based desktop

app, which gives the opportunity of setting material and environment properties,

enables the possibility to design objects easily and exports it as an applet, so that

it can be embedded in websites. We created virtual experiments, where a user can

study the temperature behavior of different materials and environments in a time

range.

Below we will present some of the simulations. The simulations cover everyday

phenomena like cooking, using a covered and an uncovered pot, and range to build-

ings, which is a much more complicated project, where students are encouraged to

experiment with a house in insulation and a house without insulation. In the building

all parameters can be changed, as the thickness of the walls, the size of the window,

windows can be added or removed, the house can have a tile roof or not, the angle

of the sun and the intensity of the sunshine, etc. In this way students can observe

how all these influence the temperature in the building.

We start with the “Cooking experiment”. In this concept, we designed a simplified

kitchen, where there are two pots made of conductive materials. Students can observe

the cooking process when one pot is covered with a lid and the other is not. Questions

like “In which pot will the water boil quicker”, or “In which case do we observe more

loss of heat to the environment”, etc can be addressed. In Fig. 1 we depict the initial

state of the experiment. In both pots thermometers are placed in order to observe

the change of the temperature in each pot. Students may also add thermometers to

several points of the environment in order to check the temperature change of it.

Material properties: both, pots and cooking materials, are highly conductive and

have the initial temperature of 20 degrees of Celsius. Thermal properties of the above

are initiated as shown in Table 1.

Tab. 1: Thermal properties of the materials used in the cooking experiment.

Material Termal conductivity Specific heat Density

[W/m◦C] [J/kg◦C ] [Kg/m3]

Pot 1 1300 25

Heat source 1 1300 25

(constant temperature of 50◦C

Cooking material 1 1300 25
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Fig. 1: The cooking experiment.

The air conductivity is to 0.024 W/m◦C, specific heat to 1012 J/kg◦C, density to

1.225 kg/m3, kinematic viscosity to 0.12170293 m2/s.

The model has a time step length of 0.1 s and thermometers are placed inside of

each pot, so users can observe their behavior through time.

The second experiment we present is the “Zero energy house”. The simulation

below, is a component of an educational framework called “Learning about zero

energy houses”, intended to help students to understand heat transfer processes

starting from the mentioned simplified concepts and use their results and conclusions

to more complicated situations, like the thermal behavior of a zero energy house.

The following two simulations were designed in order to model the passive thermal

behavior of a house that uses the sun as a thermal source. Both simulations were

“built” using building materials like bricks, wood, glass, etc. The main difference is

that the one has an additional layer of high insulated material, as shown below in

Fig. 2.

The properties of the materials we used in this simulation are presented in Table 2.

4. Results

By running these simulations, users collect temperature data or analyze directly the

diagrams from indications of the thermometers that were placed on each model.

Below there are some data about each model:
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Fig. 2: House models with and without insulation.

Tab. 2: The thermal properties of the building materials used in the house models.

Hause models

Material Termal conductivity Specific heat Density

[W/m◦C] [J/kg◦C ] [kg/m3]

roof 0.84 800 1900

walls 0.84 800 1900

walls (insulation) 0.035 1400 25

ceiling 1.13 1000 200

floor 1.13 1000 200

window 0.001 1300 25

4.1. The cooking experiment

Thermometers are placed inside each pot, in the same position and as the simulation

runs, we can observe the change of the temperature in each pot. Thus we can watch

in which case (pot) our food will be cooked quicker. By running the simulations we

can choose if we want to see the simulation only, by reading the temperatures on

the thermometers, or if we also want to have the temperatures of the thermometers,

T1 and T2, depicted in graphs at the same time, as shown in Fig. 3, below. The

coloration of the background depicts the temperature, starting with blue for the

lowest temperature and white the highest. From that we can also infer the heat flow

to the environment

We can also get the results in a table for further examination as presented in

Fig. 4, where we get the readings of the thermometers at a specified time interval,

in our case 10 seconds.



Physical processes of energy transfer related to everyday life experiences 83

Fig. 3: Running the cooking experiment simulation.

The results from the above experiment show that in the covered pot, the tem-

perature is better maintained and increased quicker than in the uncovered one. This

conclusion can be used in cooking or warming up food in our everyday live, but

also to stimulate discussions as for example by covering a hot beverage it can main-

tain its high temperature for a longer time. This finding can furthermore be used

to motivate discussions about other similar issues or everyday phenomena. Such an

important example is the ceiling in house’s roof.

4.2. Low energy consumption houses

The following simulations, which are actually quite similar as described above, rep-

resent house models, with the aid of which we can study their thermal behavior.

Thermometers are placed inside and outside the house model. More specifically,

there are two thermometers outside the house – in the environment of the building

– one in front and the other behind the house model. In addition, inside the house

there are more thermometers placed in different positions, as for example, in front of

the window, in the middle of the room, close to the ceiling, in the back of the room.

The user is free to add and position in specific positions thermometers in order to

observe the change of the temperature and the temperature distribution inside the

building.
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Fig. 4: Data of the process can be exported in a table for further analysis.

Below, in Fig. 5, we present a screenshot of the simulation of a house model

without insulation.

There are many scenarios we can follow by running these simulations. We can

change the angle of the sun – in this way the sunrays can enter deeper into the

room. We can change the size of the window (allowing more or less sunrays to enter

into the room), or the orientation of the window (showing that it is not indifferent

in which direction the window is placed). We can also change the thickness of the

walls (changing thus the heat capacity of the building material). We can furthermore

examine how small changes of the form of the house, as for example the addition of
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Fig. 5: Screenshots of the simulation of the house model without insulation.

Fig. 6: Exported data from the simulation of the house without insulation.
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a ceiling or a tiled roof has on its thermal behavior, or even what happens if we have

both, a ceiling and a tiled roof. We can also change the position of the vegetation etc,

thus influencing the amount of sunrays that reach the window and exterior building

elements and study the thermal behavior of these house models. We can analyze the

influence of these differences on the thermal behavior of the various house models

by comparing the values of the thermometers that are placed indoors and outdoors,

calculating and comparing their mean value or analyzing the diagram.

From the simulation of the above scenario as shown in Fig. 6, we can compare

the indoor and outdoor temperature difference, but we can also observe a tempera-

ture dispersion inside the house, with places that are warmer or colder than other

parts. This indicates that the house does not always offering a comfortable living

environment, with parts that are much colder.

4.3. The insulated house

In order to study the influence of insulation to a building, we have to compare two

similar buildings, one without and one with insulation.

Fig. 7: Simulation of the house model with insulation.

In this house model we can also test a number of different scenarios, in order to

check their influence of the thermal behavior of the house. We can run the scenarios

mentioned previously and compare the results to the ones with the house model

without insulation material. We can furthermore study the difference of putting
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the insulation inside or outside the walls in the house model. The above results

can be the starting point for several discussions and conclusions of the factors that

affect the internal temperature of houses, and more particular of zero energy houses.

Comparing the results of the two simulations which have the same conditions, we

can observe the indoor-outdoor temperature difference in the two model houses and

realize that insulated houses are warmer during cold weather than the ones without

insulation. We can also observe the temperature stability that an insulated house

can achieve, compared to the one without the insulation materials.

5. Conclusions

Simulations can be highly powerful tools in an active learning process. Students can

inquire knowledge, check by experiments others or their own assumptions, reach to

conclusions and form positive attitudes towards a sustainable way of living. Thermal

simulations using Energy2d enable the construction of applications with everyday

phenomena, which even if they are based in complex mathematical and physical sys-

tems, give students the opportunity to simplify the process and experiment with the

various forms of heat transfer. The results from the educational framework of these

simulations were used showing high interest and participation from the students,

better understanding of the phenomena, and better collaboration among them. Feed-

back on the simulations and their use in the educational process were very positive

from both, the teachers and the students. Teachers suggested that each simulation

separately could be used as a standalone application and develop separate projects

of each one. This framework is still in progress and part of a research project about

the effectiveness of polymorphic distant learning environments based on Education

for Sustainable Development.
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PROCESY FIZYCZNE TRANSFERU ENERGII ZWIA̧ZANE

Z CODZINNYM DOŚWIADCZENIAMI ŻYCIOWYMI

S t r e s z c z e n i e

W artykule opisujemy rozmaite podej́scia do fizycznych procesów transferu energii,
które moga̧ być wykorzystane w procesie nauczania z tego zakresu, zogniskowanym na me-
ritum tematu. Dla osia̧gniȩcia tego, zasta l zastosowany polimorficzny zakres edukacyjny, co
zawiera platformȩ nawia̧zuja̧ca̧ do rozmaitych narzȩdzi edukacyjnych jak symulacje, rzeczy-
wiste doświadczenia potwierdzaja̧ce, prezentacje itd., które sa̧ w użyciu nauczyciela lub in-
nej zainteresowanej osoby. Symulacje moga̧ być użyteczne przy modelowaniu zjawisk fizy-
cznych w różnych skalach w tym samym czasie i moga̧ pomóc użytkownikom, by lepiej
zrozumieć teoretyczna̧ strukturȩ zjawiska wraz z zastosowaniem w realnym życiu.

S lowa kluczowe: transfer energii, równania Naviera-Stokesa, modelowanie a symulacja
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1. Introduction

Let (X, τ) be a topological space. By (X, τsem) we denote the semi-regularization of

(X, τ) i.e. X with the topology generated by regular open subsets of X.

By (X, τini) we denote the initial topology i.e. X with the topology induced by

the family of τ -continuous functions from X to R. The topology τini is the coarsest

topology for which the τ -continuous functions are continuous (see [AP], p. 51).

Let us recall that a space (X, τ) is completely regular if and only if τ is the

coarsest topology for which the τ -continuous functions are continuous (see [AP],

p. 51).

Recall that a space (X, τ) is completely regular if and only if τ = τini.

The aim of this paper is to discuss more thoroughly some properties of the con-

tinuity of real functions with respect to several density topologies and to show that

the semi-regularization of some of them is the coarsest topology for which the con-

tinuous functions with respect to the topology are continuous. At the end of the



92 J. Hejduk, W. Wilczyński, and W. Wojdowski

paper we pose a problem to find a characterisation of these density topologies for

which the semi-regularization is the initial topology.

We shall prove that in case of several density topologies a stronger version of the

theorem cited below is valid.

Proposition 1. (Proposition 1.14 in [AM]) Let (X, τ) be a topological space,

(X, τsem) the semi-regularization of (X, τ) i.e. X with the topology generated by reg-

ular open subsets of X. Let Y be a regular space. Then functions f : (X, τ) → Y

and f : (X, τsem)→ Y are continuous simultaneously.

It is also worth mentioning that (X, τ) is a topological Hausdorff space if and

only if (X, τsem) is Hausdorff (compare [MR]).

We start with some overview of the notion of the density topology.

Let S be a σ-algebra of subsets of the real line R, and I ⊂ S a proper σ-ideal.

In measure case we shall consider S = M the family of Lebesgue measurable sets

and I = N the family of null sets. In category case we shall consider S = B the sets

with the Baire property and I = I the first category sets. With λ we denote the

Lebesgue measure on the real line. Further,

n ·A = {nx : x ∈ A} , A− x0 = {x− x0 : x ∈ A}

and A ∼ B means that A4B ∈ I. We assume that both S and I are closed under

translations A− x0 = {x− x0 : x ∈ A} and dilations n ·A = {nx : x ∈ A}.
Recall that the point x ∈ R is a Lebesgue density point of a measurable set A, if

and only if

(∗) lim
h→0

λ (A ∩ [x− h, x+ h])

2h
= 1

The notion of density point has been studied and developed extensively since the

notion of density topology Td was introduced by Haupt and Pauc in 1952 [HP]. It is

interesting that the related notion of approximate continuity, as defined by Denjoy

in 1915 [D], had been known far earlier and utilized in the study of the theory

of integration. The properties of the density topology were discovered gradually

by Goffman and Waterman [GW], Goffman, Neugebauer and Nishiura [GNN] and

Tall [T]. The state of the art of the theory at the end of 70-ties was presented by

J. C. Oxtoby in his excellent book [O]. However, in 1981 the definition of the density

point was reformulated without the use of the notion of measure (see [W1]).

The condition (∗) in the definition is equivalent to any of the following:

lim
n→∞

λ
(
A ∩

[
x− 1

n , x+ 1
n

])
2
n

= 1

or

lim
n→∞

λ (n · (A− x) ∩ [−1, 1]) = 2

or {
χ(n·(A−x))∩[−1,1]

}
n∈N converges in measure to χ[−1,1].
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With the use of the Riesz theorem an equivalent definition was given, by Wilczyń-

ski in 1981, in terms of convergence almost everywhere of characteristic functions of

dilations of the set A.

Definition 1. (Wilczyński 1981). We say that x is a density point of a measurable

set A ∈ M if for any sequence of real numbers {tn}n∈N, decreasing to zero there is

a subsequence {tnm}m∈N such that the sequence{
χ 1

tnm
·(A−x)∩[−1,1]

}
m∈N

of characteristic functions converges N -almost everywhere (a.e.) on [−1, 1] to

χ[−1,1].

The reformulated definition presented the opportunity for the study of more

subtle properties of the notion of the density point and density topology and its

various modifications. It allowed to introduce a category analogue of the notion

(see [PWW1], [PWW2], [CLO]).

Definition 2. (cf. [PWW1]) We say that x is an I-density point of a Baire set

A ∈ B if for any sequence of real numbers {tn}n∈N, decreasing to zero, there is a

subsequence {tnm
}m∈N such that the sequence{

χ 1
tnm
·(A−x)∩[−1,1]

}
m∈N

of characteristic functions converges I-almost everywhere on [−1, 1] to χ[−1,1]

(which means except on a set belonging to I).

The notion of the I-density point leads in a natural way to the definition of the

I-density topology which appeared to have most the same topological properties of

the Lebesgue density topology. This study extended thus the Oxtoby’s investigation

of similarities and dissimilarities of the properties of the families (M,N ) and (B, I).

In view of the above results the following definition in more general settings where

(S, I) is an arbitrary pair of S, σ-algebra of subsets of the real line R and I ⊂ S a

proper σ-ideal, is quite natural (see [PWW1]).

Definition 3. A point x ∈ R is an I-density point of a set A ∈ S, if for any sequence

of real numbers {tn}n∈N, decreasing to zero, there is a subsequence {tnm
}m∈N such

that the sequence {
χ 1

tnm
·(A−x)∩[−1,1]

}
m∈N

of characteristic functions converges I-almost everywhere on [−1, 1] to χ[−1,1]

(which means except on a set belonging to I).

The set of all I-density points of A ∈ S will be denoted by ΦI (A).



94 J. Hejduk, W. Wilczyński, and W. Wojdowski

2. Properties

We shall present now some properties of regular open sets in a general case.

Let B ⊂ 2R be a σ-algebra and I ⊂ B a σ-ideal containing singletons and such

that
⋃

I = R.

We assume that for every A ⊂ R there is a B-kernel of A i.e. a subset B ∈ B of

A such that all B-subsets of A \B are sets from I (compare [M]).

Let Φ : B→ 2R have the following properties:

(1) for each A ∈ B, Φ (A) ∼ A,

(2) for each A,B ∈ B, if A ∼ B, then Φ (A) = Φ (B),

(3) Φ (∅) = ∅, Φ (R) = R,

(4) for each A,B ∈ B, Φ (A ∩B) = Φ (A) ∩ Φ (B).

The family T = {A ∈ B : A ⊂ Φ (A)} = {Φ (A) \ P , A ∈ B, P ∈ I} is a topology.

We call it a density-type topology generated by the operator Φ which is called lower

density operator on (B, I).

Remark 1. Observe that

a) we have Φ : B→ B in view of (1).

b) Φ is monotonic since if A ⊂ B we have Φ (A) = Φ (A ∩B) = Φ (A)∩Φ (B) ⊂
Φ (B),

c) Φ is idempotent by (1) and (2).

Theorem 1. For an arbitrary set A ⊂ R

IntT (A) = A ∩ Φ (B) ,

where B is an B-kernel of A.

Proof. We can follow here the proof of Theorem 2.5. from [W2] (compare [Os]).

Let x ∈ IntT (A). Then there exists a set U ∈ T such that x ∈ U and U ⊂ A.

So x ∈ Φ (U). Since U \ B ⊂ A \ B and U \ B ∈ B we have U \ B ∈ I. Hence

Φ (U) = Φ (U ∩B) ⊂ Φ (B) and x ∈ A ∩ Φ (B).

Suppose now that x ∈ A∩Φ (B) and we can find P ∈ I such that x ∈ P ⊂ A. Then

B ∪ P ⊂ A and B ∪ P ∈ B, so Φ (B ∪ P ) = Φ (B). Hence x ∈ (B ∪ P ) ∩ Φ (B ∪ P ).

Since Φ is idempotent and Φ ((B ∪ P ) ∩ Φ (B ∪ P )) = Φ (B ∪ P ) ∩ Φ (Φ (B ∪ P )) =

Φ (B ∪ P ), the set (B ∪ P ) ∩ Φ (B ∪ P ) is T -open. So there exists a T -open set

including x and included in A. Hence x ∈ Int (A). �

Theorem 2. A set A ∈ B is T -regular open if and only if A = Φ (D) for some

D ∈ B.

Proof. Let A be T -regular open, i.e., A = IntT (ClT (A)). Then A = ClT (A) ∩
Φ (ClT (A)) = ClT (A) ∩ Φ (A) = Φ (A). The first equality follows from the above

theorem, the second from the fact that ClT (A) ∼ A (because ClT (A) = R\IntT (R\
A) and IntT (R \ A) = (R \ A) ∩ Φ(R \ A) ∼ (R \ A ) and from (1), the third from
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the inclusion Φ (A) ⊂ ClT (A). To justify the last inclusion we can write ClT (A) =

R \ IntT (R \A) = R \ ((R \A) ∩ Φ (R \A)) = A ∪ (R \ Φ (R \A)).

Since

Φ (A) ∩ Φ (R \A) = ∅, Φ (A) ⊂ R \ Φ (R \A) ⊂ A ∪ (R \ Φ (R \A)) = ClT (A).

Suppose now that A = Φ (A). We have

IntT (ClT (A)) = ClT (A) ∩ Φ (ClT (A)) = ClT (A) ∩ Φ(A) = Φ (A)) = A.

The verification of the first, second and the third equalities is exactly as above, the

fourth is simply our assumption. �

From now B is the family of Baire sets B and I is the family of sets of the first

category I. We assume now additionally that A ⊂ Φ (A) (equivalently A ∈ T ), for

every A open in Tn – the natural topology.

Recall that any set A having the Baire property can be presented in a unique

way in the form G (A)4P where G (A) is regular open and P is of the first category.

Remark 2. As a consequence of (2) for every A ∈ B we have Φ (A) = Φ (G (A)),

since G (A) ∼ A.

Theorem 3. If a function f : R→ R is T continuous, then f−1((a, b)) is a countable

union of T -regular open sets, for every (a, b) ⊂ R.

Proof. Suppose f : R → R is T continuous function. Let (a, b) ⊂ R. We have

f−1((a, b)) = Φ (A)\P for some A ∈ B and P ∈ I, and we can assume P ⊂ Φ (G (A)).

Let x ∈ Φ (A). We shall show that f (x) ∈ [a, b]. Really, as f is T continuous, for

every ε > 0 the set f−1 ((f (x)− ε, f (x) + ε)) ∈ T and contains x. Since

({x} ∪ (Φ (A) \ P )) ∼ Φ (A)

we have

({x} ∪ (Φ (A) \ P )) ⊂ Φ ({x} ∪ (Φ (A) \ P ))

and thus also x ∈ {x} ∪ (Φ (A) \ P ) ∈ T . Thus

f−1((a, b)) ∩ f−1 ((f (x)− ε, f (x) + ε)) 6= ∅

and belongs to T .

Hence for every ε the set (a, b) intersects with (f (x)− ε, f (x) + ε) and therefore

f (x) ∈ [a, b] (x ∈ f−1([a, b])). We have f−1((a, b)) ⊂ Φ (A) ⊂ f−1([a, b]).

We can repeat the above considerations for every set of the form
(
a+ 1

n , b−
1
n

)
,

where n ∈ N. We may write

f−1

(
a+

1

n
, b− 1

n

)
= Φ (An) \ Pn,
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where An ∈ B and Pn ∈ I , n ∈ N and we can assume Pn ⊂ Φ (An), n ∈ N. We have

f−1((a, b)) =

∞⋃
n=1

f−1((a+
1

n
, b− 1

n
)) ⊂

∞⋃
n=1

Φ (An)

⊂
∞⋃

n=1

f−1([a+
1

n
, b− 1

n
]) = f−1((a, b)).

Thus

f−1((a, b)) =

∞⋃
n=1

Φ (An) .

We presented f−1((a, b)) as a countable union of T -regular open sets. �

Remark 3. From Proposition 1.14 in [AM] we have that the set f−1((a, b)) is open

in the semiregularization of T . Above we have shown that the set f−1((a, b)) is a

sum of only countably many T -regular open sets.

In [OM] O’Malley proved that the family of sets fulfilling condition A ∈ Td,

where Td is density topology, and λ (A) = λ (Int (A)) (called almost open) forms a

topology (called a.e.-topology). He proved that a.e.-topology is completely regular

but not normal.

The a.e.-open sets can be characterized as sets of the form G∪S where G is open

in the natural topology and S ⊂ Φd (G), where Φd is the Lebesgue density operator.

Clearly, S can be nowhere dense here.

By analogy, we define T -a.e.-topology as a family of sets of the form G∪S where

G is open in the natural topology and S ⊂ Φ (G).

Theorem 4. If a function f : R → R is T -approximately continuous, then it is

continuous in T -a.e. topology.

Proof. Suppose f : R → R is T -approximately continuous function. Let (a, b) ⊂ R.

From the proof of the Theorem 3 we have

f−1((a, b) =

∞⋃
n=1

Φ (An) ,

where An ∈ B. By (2) we have Φ (An) = Φ (G(An)), where G(An) is the regular

open set such that An = G (An)4 Pn, n ∈ N. As assumed, since G (An) ∈ Tn, we

have G (An) ⊂ Φ (G (An)) and thus

f−1((a, b) =

∞⋃
n=1

Φ (An) =

∞⋃
n=1

Φ (G (An)) ⊃
∞⋃

n=1

G (An) .

We put G =
∞⋃

n=1
G (An), and S = f−1((a, b) \

∞⋃
n=1

G (An).

Clearly Φ (G(An)) ⊂ Φ(
∞⋃

n=1
G (An)) by monotonicity of Φ.
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Then
∞⋃

n=1

Φ (G(An)) ⊂ Φ(

∞⋃
n=1

G (An))

and by monotonicity and idempotency of Φ

Φ(

∞⋃
n=1

Φ (G(An))) ⊂ Φ(Φ(

∞⋃
n=1

G (An))) = Φ(

∞⋃
n=1

G (An))

and finally

S = f−1((a, b) \
∞⋃

n=1

G (An)

= Φ(

∞⋃
n=1

Φ (G(An)) \
∞⋃

n=1

G (An)) ⊂ Φ(

∞⋃
n=1

G (An)) = Φ (G) .

�

3. Methods and examples

We shall present several examples of density-type topologies for which semi-regular-

ization is the initial topology and show various methods of proof.

1. Lebesgue density topology

It is a consequence of the fact that the density topology is completely regular.

2. I-density topology

I-density point from Definition 3 leads to the lower density operator ΦI which

generates the I-density topology TI = {A ∈ B : A ⊂ ΦI (A)}.
We denote the set of all I-density points by ΦI (A) and the induced topology

{A ∈ B : A ⊂ ΦI (A)} by TI .

We may use now the Theorem 2 (compare also [PWW1], [PWW2] and [CLO]).

Let x ∈ B where B is open in semTI a semi-regularization of TI . By definition of

semi-regularization there is a TI-regular open set A ⊂ B such that x ∈ A. Assume

for simplicity that x = 0. We shall define a semTI-continuous function f : R → R
such that f (0) = 1 and Ac ⊂ f−1 (0). By above A = ΦI (D) for some D ∈ B. We

have ΦI (D) = ΦI (H), where H = G (D) regular open set, and x ∈ A = ΦI (D) =

ΦI (H) i.e.:

For any sequence of real numbers {tn}n∈N, decreasing to zero, there exists a

subsequence {tnm
}m∈N such that the sequence{

χ 1
tnm
·(H−x)∩[−1,1]

}
m∈N

of characteristic functions converges to χ[−1,1] I-almost everywhere on [−1, 1].

By Lemma 2.2.4 in [CLO] there exists an interval set E ⊂ H, consisting of closed

intervals such that 0 is an I-density point of E.
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Lemma 1. (Lemma 2.2.4 in [CLO]) Let H be a regular open set. Then, the following

are equivalent:

(i) 0 is an I-density point of H;

(ii) there exists an interval set E ⊂ H, consisting of closed intervals such that 0

is an I-density point of E.

Define

f (x) =

{
1 x = 0

dist(x,Hc)
dist(x,Hc)+dist(x,E) x 6= 0

It is easy to see that f (0) = 1, Ac ⊂ Hc ⊂ f−1 (0) and that f is continuous on

R \ {0}. Moreover, f is semTI-continuous at 0 as E ⊂ f−1 (1).

3. TΨc-topology

Let C denote a class of continuous increasing functions Ψ : R+ → R+ such that

limt→0+ Ψ (t) = 0.

Definition 4. Given Ψ ∈ C, a point x ∈ R is a Ψc-density point of a set E ∈ B, if

and only if

lim
h→0+

λ
(
G (E)

′ ∩ [x− h, x+ h]
)

2h ·Ψ (2h)
= 0.

It means that x is a Ψc-density point of E ∈ B if x is a Ψ-density point of

G (E).(see [WT])

The operator ΦΨc : B → 2R was defined by

ΦΨc (A) = {x ∈ R : x is a Ψc− density point of A}. Thus we have ΦΨc (A) =

ΦΨ (G (A)). It was proved that for each Ψ ∈ C, the mapping ΦΨc : B → 2R is the

lower density operator on (B, I).

Consequently, the TΨc-topology was defined as a family

TΨc = {A ∈ B : A ⊂ ΦΨc (A)} = {ΦΨc (A) \ P : A ∈ B, P ∈ I}

and shown in [WIWO] that for each Ψ ∈ C the family TΨc is stronger than the

natural topology and weaker than the Tc-density topology and is not regular.

When we put Ψ to be constant and equal 1 in Definition 1, we obtain the definition

of the c-density point leading to the lower density operator Φc which generates the

Tc-density topology [Wo1].

Let x ∈ B where B is open in semTΨc a semi-regularization of TΨc. By definition

of semi-regularization there is a TΨc-regular open set A ⊂ B such that x ∈ A.

Assume x = 0. We shall define a semTΨc-continuous function f : R → R such that

f (0) = 1 and Ac ⊂ f−1 (0). By above A = ΦΨc (D) for some D ∈ B. We have

ΦΨc (D) = ΦΨ (G (D)) , G (D) ⊂ ΦΨc (D) = A

and

x ∈ ΦΨc (D) = ΦΨ (G (D))
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i.e.

lim
h→0+

λ
(
G (D)

′ ∩ [−h, h]
)

2h ·Ψ (2h)
= 0.

Since G (D) is regular open in every interval
(

1
n+1 ,

1
n

)
we can find {Ink }

kn

k=1 a

finite number of pairwise disjoint open intervals such that

Ink ⊂ G (D) ∩
(

1

n+ 1
,

1

n

)
and closed intervals {Jn

k }
kn

k=1, Jn
k ⊂ Ink such that

λ
(
J ′n ∩

(
1

n+1 ,
1
n

))
λ
(
G (D)

′ ∩
(

1
n+1 ,

1
n

)) < 1 +
1

n
,

where Jn =
kn⋃
k=1

Jn
k .

The set E =
∞⋃

n=1
Jn forms a closed interval set and since clearly

lim
h→0+

λ (E′ ∩ [−h, h])

2h ·Ψ (2h)
= 0

we have x ∈ ΦΨ (E). We also define an open interval set

V =

∞⋃
n=1

In, where In =

kn⋃
k=1

Ink .

Define

f (x) =

{
1 x = 0,

dist(x,V c)
dist(x,V c)+dist(x,E) x 6= 0

.

It is easy to see that f (0) = 1, Bc ⊂ V c ⊂ f−1 (0) and that f is continuous on

R \ {0}. Moreover f is semTΨc-continuous at 0 as E ⊂ f−1 (1).

4. c-density topology

We may follow here the proof of Theorem 2. Equivalently this can be deduced

from inclusion Tc ⊇ T a.e. since Ta.e. = a.e.-topology is completely regular and thus

Tc ⊇ Ta.e. = Tsem= T ini.

5. TAI
topology.

For the convenience of the reader we recall the definition from the papers [Wo2]

and [Wo3].

With AI we denote the family of subsets of interval [−1, 1] having 0 as its I-

density point.
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Definition 5. (cf. [Wo2], [Wo3]) We say that x is an AI-density point of A ∈ S, if

for any sequence of real numbers {tn}n∈N, decreasing to zero, there exists a subse-

quence {tnm
}m∈N and a set B ∈ AI such that the sequence{

χ 1
tnm
·(A−x)∩[−1,1]

}
m∈N

of characteristic functions converges I-almost everywhere on B to 1.

We denote the set of all AI -density points ΦAI
(A) and the induced topology

{A ∈ S : A ⊂ ΦAI
(A)} by TAI

.

The argument here is analogous to that for TI topology.

6. TAc
-topology.

Let us recall now a definition from [Wo4]:

Ad− the family of measurable subsets of [−1, 1] that have Lebesgue density one

at 0.

Definition 6. (cf. [Wo4]) We say that x is an Ac-density point of A ∈ S, if for

any sequence of real numbers {tn}n∈N, decreasing to zero, there exists a subsequence

{tnm
}m∈N and a set B ∈ Ad such that the sequence{

χ 1
tnm
·(G(A)−x)∩[−1,1]

}
m∈N

of characteristic functions converges almost everywhere on B to 1.

We denote the set of all Ac-density points by ΦAc (A) and the induced topology

{A ∈ S : A ⊂ ΦAc
(A)} by TAc

.

The argument in this case is analogous to that for TΨc-topology. However, in

the final part of the proof of the analogy of Theorem 2 we have to take one more

subsequence. We shall show details below.

Let x ∈ B where B is open in semTAc
– a semi-regularization of TAc

. By definition

of semi-regularization there is a TAc
-regular open set A ⊂ B such that x ∈ A. Assume

for simplicity that x = 0. We shall define a semTAc
-continuous function f : R→ R

such that f (0) = 1 and Ac ⊂ f−1 (0). By above A = ΦAc
(D) for some D ∈ B. We

have ΦAc (D) = ΦAc (G (D)), G (D) ⊂ ΦAc (D) = A and x ∈ ΦAc (D) i.e. for any

sequence of real numbers {tn}n∈N, decreasing to zero, there exists a subsequence

{tnm
}m∈N and a set B ∈ Ad such that the sequence

{
χ 1

tnm
·(A−x)∩[−1,1]

}
m∈N

of

characteristic functions converges almost everywhere on B to 1. Hence the sequence{
χ 1

tnm
·(A−x)∩[−1,1]

}
m∈N

converges in measure to 1 on B. Since G (D) is regular open

in every interval
(

1
n+1 ,

1
n

)
we can find {Ink }

kn

k=1 a finite number of open intervals,

Ink ⊂ G (D) ∩
(

1

n+ 1
,

1

n

)
, k = 1, . . . , kn
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and closed intervals {Jn
k }

kn

k=1, Jn
k ⊂ Ink such that

λ
(
J ′n ∩

(
1

n+1 ,
1
n

))
λ
(
G (D)

′ ∩
(

1
n+1 ,

1
n

)) < 1 +
1

n
,

where Jn =
kn⋃
k=1

Jn
k . The set E =

∞⋃
n=1

Jn forms a closed interval set and{
χ 1

tnm
·(G(E)−x)∩[−1,1]

}
m∈N

(as well as
{
χ 1

tnm
·(E−x)∩[−1,1]

}
m∈N

) converges in measure to 1 on B. Consequently

there is a subsequence {
χ 1

tnmk
·(G(E)−x)∩[−1,1]

}
k∈N

that converges (as well as

{
χ 1

tnmk
·(E−x)∩[−1,1]

}
m∈N

) almost everywhere on B to 1.

Thus x ∈ ΦAc (E).

We define an open interval set V =
∞⋃

n=1
In, where In =

kn⋃
k=1

Ink .

Define

f (x) =

{
1 x = 0,

dist(x,V c)
dist(x,V c)+dist(x,E) x 6= 0.

It is easy to see that f (0) = 1, Bc ⊂ V c ⊂ f−1 (0) and that f is continuous on

R \ {0}. Moreover, f is semTAc-continuous at 0 as E ⊂ f−1 (1).

Problem 1. Characterize these density topologies for which semi-regularization is

the initial topology.
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Poland
e-mail: hejduk@uni.lodz.pl

wwil@uni.lodz.pl

Department of Mathematics
Technical University of  Lódź
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Commission of the  Lódź Society of Sciences and Arts on January 27, 2016



On semi-regularization of the density-type topologies 103

O SEMIREGULARYZACJI TOPOLOGII TYPU GȨSTOŚCIOWEGO

S t r e s z c z e n i e

Wykazujemy, że dla szeregu topologii gȩstościowych semiregularyzacja topologii daje
s laba̧ topologiȩ, dla której funkcje aporoksymatywnie cia̧g le w tej topologii sa̧ cia̧g le.
Wskazujemy na różne metody dowodu tej w lasności i pytamy o charakteryzacjȩ topologii
gȩstości o tej w lasności.

S lowa kluczowe: punkt gȩstości, topologia gȩstości, semiregularyzacja
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Summary
Formulas for volumes of octahedra, tetragonal pyramids, triangular prisms and trun-

cated triangular prisms, involving determinants of rectangular matrices, are presented.
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1. Introduction

In [2] Radić introduced the following definition of the determinant of a rectangular
matrix.

Definition 1.1. Let A = [A1, A2, . . . , An] be a m × n matrix with n columns
A1, . . . , An and m ≤ n. The determinant of A is defined as

det[A1, A2, . . . , An] =
∑

1≤j1<...<jm≤n

(−1)r+j1+j2+...+jm det[Aj1 , Aj2 , . . . , Ajm ],(1)

where r = 1 + 2 + . . .+m.

Each column of a m × n matrix corresponds to a point in Rm, so one can ask
about the geometrical interpretation of the determinant 1 of a matrix consisting of
n columns which contain coordinates of n points in Rm. So far, very little is known
about such interpretation, the only results include expressing areas of polygons in
R2 in terms of determinants of 2 × n matrices (see [3–6]), expressing volumes of
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“diamond-shaped” polyhedra in R3 in terms of determinants of 3 × n matrices (see
[6]), and the following theorem (see [6]).

Theorem 1.2. Let A1, A2, . . . , Am+1 be vertices of an oriented m-simplex in Rm.
Then the m-dimensional volume of this simplex, vol(A1, A2, . . . , Am+1), is equal to

vol(A1A2 . . . Am+1) =
1

m!

∣∣∣det[A1, A2, . . . , Am+1]
∣∣∣.

In particular, for n = 3, we have the formula for the volume of a tetrahedron

vol(A1A2A3A4) =
1

6

∣∣∣det[A1, A2, A3, A4]
∣∣∣.(2)

In this paper we concentrate on the geometrical interpretation of determinants of
3× n matrices and present formulas for volumes of octahedra, tetragonal pyramids,
triangular prisms and truncated triangular prisms in terms of determinants of 3×n
matrices.

2. Volumes of octahedra and tetragonal pyramids

Lemma 2.1. Let A1, A2, A3, A4, A5, A6 be vertices of an octahedron (see Fig. 1) in
R3 such that A2, A3, A4, A5 are consecutive vertices of a parallelogram. Then

(a) if the vertices A1 and A6 lie on opposite sides of the plane containing the
parallelogram, then

det[A1, A2, A3, A4] · det[A3, A4, A5, A6] > 0,

(b) if the vertices A1 and A6 lie on the same side of the plane containing the
parallelogram, then

det[A1, A2, A3, A4] · det[A3, A4, A5, A6] < 0,

(c) det[A1, A2, A3, A4, A5, A6] = det[A1, A2, A3, A4] + det[A3, A4, A5, A6].

Proof. Let B1 = A1−A2, B3 = A3−A2, B4 = A4−A2 and B6 = A6−A2. Applying
theorem 2, equation (14) from [6], and theorem 2.6 from [1], we have

det[A1, A2, A3, A4] · det[A3, A4, A5, A6] = det[B1, 0, B3, B4] · det[0, B3, B4, B6]

= det[B1, B3, B4] · (−det[B3, B4, B6])

= −〈B3 ×B4, B1〉 · 〈B3 ×B4, B6〉,
where × and 〈·, ·〉 denote the cross product and the scalar product of two vec-
tors in R3, respectively. Since B3 × B4 is a normal vector to the plane containing
A2, A3, A4, A5, we have

det[A1, A2, A3, A4] · det[A3, A4, A5, A6] > 0
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Fig. 1: Octahedra.

if and only if the vertices A1 and A6 lie on opposite sides of the plane containing
A2, A3, A4, A5, and

det[A1, A2, A3, A4] · det[A3, A4, A5, A6] < 0

if and only if the vertices A1 and A6 lie on the same side of the plane containing
A2, A3, A4, A5. The proof of (a) and (b) is complete.

The proof of (c) requires the use of definition 1.1 and the property of a parallel-
ogram

A2 +A4 = A3 +A5(3)

in the following calculations

det[A1, A2, A3, A4, A5, A6]− det[A1, A2, A3, A4]− det[A3, A4, A5, A6]

= det[A1, A2, A5]− det[A1, A2, A6]− det[A1, A3, A5]

+ det[A1, A3, A6] + det[A1, A4, A5]− det[A1, A4, A6]

+ det[A1, A5, A6] + det[A2, A3, A5]− det[A2, A3, A6]

− det[A2, A4, A5] + det[A2, A4, A6]− det[A2, A5, A6]

= det[A1, A3 +A5 −A4, A5]− det[A1, A2, A6]− det[A1, A3, A5]

+ det[A1, A2 +A4 −A5, A6] + det[A1, A4, A5]− det[A1, A4, A6]

+ det[A1, A5, A6] + det[A2, A2 +A4 −A5, A5]− det[A2, A2 +A4 −A5, A6]

− det[A2, A4, A5] + det[A2, A4, A6]− det[A2, A5, A6]

= 0.

�
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Theorem 2.2. Let A1, A2, A3, A4, A5, A6 be vertices of a octahedron (see Fig. 1) in
R3 such that A2, A3, A4, A5 are consecutive vertices of a parallelogram and the ver-
tices A1 and A6 do not lie on the same side of the plane containing the parallelogram.
Then the volume of the octahedron, vol(A1, A2A3A4A5, A6), is three times less than
the absolute value of det[A1, A2, A3, A4, A5, A6],

vol(A1, A2A3A4A5, A6) =
1

3

∣∣∣ det[A1, A2, A3, A4, A5, A6]
∣∣∣

=
1

3

∣∣∣ det[A6, A1, A2, A3, A4, A5]
∣∣∣.

Proof. It follows from lemma 2.1 and formula 2 that∣∣∣det[A1, A2, A3, A4, A5, A6]
∣∣∣ = ∣∣∣det[A1, A2, A3, A4]

∣∣∣+ ∣∣∣ det[A3, A4, A5, A6]
∣∣∣

= 3! vol(A1A2A3A4) + 3! vol(A3A4A5A6)

= 3 vol(A1, A2A3A4A5, A6).

Moreover, applying corollary 2.8 from [1] and formula 3, we have

det[A1, A2, A3, A4, A5, A6]

= −det[A6, A1, A2, A3, A4, A5] + 2 det[A1, A2, A3, A4]− 2 det[A1, A2, A3, A5]

+2 det[A1, A2, A4, A5]− 2 det[A1, A3, A4, A5] + 2 det[A2, A3, A4, A5]

= − det[A6, A1, A2, A3, A4, A5],

which completes the proof. �

Corollary 2.3. Let A1, A2, A3, A4, A5 be vertices of a tetragonal pyramid (see
Fig. 2) in R3 such that A2, A3, A4, A5 are consecutive vertices of a parallelogram
(which is the base of the pyramid), A1 is the apex of the pyramid and B is an
arbitrary point which lies on the plane containing the base of the pyramid. Then

vol(A1, A2A3A4A5) =
1

3

∣∣∣ det[A1, A2, A3, A4, A5, B]
∣∣∣

=
1

3

∣∣∣ det[B,A1, A2, A3, A4, A5]
∣∣∣.

Proof. Since the pyramid can be considered as a degenerate octahedron with an
additional vertex B, the proof follows immediately from theorem 2.2. �

Corollary 2.4. Let A1, A2, A3, A4, A5, A6, A7, A8 be vertices of a parallelepiped in
R3 such that A1, A2, A3, A4 are consecutive vertices of a parallelogram and for some
vector T ∈ R3 we have Ai+4 = Ai+T , i = 1, 2, 3, 4. If B lies on the planes determined
by A1, A2, A3, A4 and C lies on the planes determined by A5, A6, A7, A8 then the
volume of this parallelepiped, vol(A1A2A3A4, A5A6A7A8), is equal to
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Fig. 2: A tetragonal pyramid.

vol(A1A2A3A4, A5A6A7A8) =
∣∣∣det[B,A1, A2, A3, A4, A4+i]

∣∣∣
=
∣∣∣det[Ai, A5, A6, A7, A8, C]

∣∣∣
for every i ∈ {1, 2, 3, 4}.

Proof. The proof follows from the above corollary 2.3 and corollary 2.8 from [1]. �

Corollary 2.5. Let A1, A2, A3, A4, A5 be vertices of a pyramid (see Fig. 2) in R3

such that A1 is the apex of the pyramid and A2, A3, A4, A5 are consecutive ver-
tices of a parallelogram which is the base of the pyramid and lies on the plane
{(x, y, z): z = 0}. Then the volume of this pyramid, vol(A1, A2A3A4A5), is three
times less than the absolute value of det[A1, A2, A3, A4, A5],

vol(A1, A2A3A4A5) =
1

3

∣∣∣det[A1, A2, A3, A4, A5]
∣∣∣.

Proof. It follows from corollary 2.3 and equation (14) from [6] that

vol(A1, A2A3A4A5) =
1

3

∣∣∣ det[A1, A2, A3, A4, A5, O]
∣∣∣

=
1

3

∣∣∣ det[A1, A2, A3, A4, A5]
∣∣∣.

�

Lemma 2.6. Let A1, A2, A3, A4, A5, A6 be vertices of an octahedron (see Fig. 1)
in R3 such that A2, A3, A4, A5 are consecutive vertices of a parallelogram and let
O = (0, 0, 0). Then

det[A1, A2, A3, A4, A5, A6] = det[A1, A2, A3, A4, A5]− det[A2, A3, A4, A5, A6].
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Proof. Applying definition 1.1 and equation 3, we have

det[A1, A2, A3, A4, A5, A6]− (det[A1, A2, A3, A4, A5]− det[A2, A3, A4, A5, A6])

= −|A1, A2, A6|+ |A1, A3, A6| − |A1, A4, A6|+ |A1, A5, A6|
+|A2, A3, A4| − |A2, A3, A5|+ |A2, A4, A5| − |A3, A4, A5|

= |A1,−A2 +A3 −A4 +A5, A6|
+|A3 −A4 +A5, A3, A4| − |A2, A3, A5|+ |A2, A3 +A5 −A2, A5| − |A3, A4, A5|

= 0. �

Corollary 2.7. Let A1, A2, A3, A4, A5, A6 be vertices of an octahedron in R3 such
that all the following conditions are satisfied:

(a) A2, A3, A4, A5 are consecutive vertices of a parallelogram,

(b) O = (0, 0, 0) lies inside the octahedron,

(c) A1 and O do not lie on the same side of the plane containing A2, A3, A4, A5,

(d) A6 and O lie on the same side of the plane containing A2, A3, A4, A5 (see
Fig. 3).

Then

vol(A1, A2A3A4A5, A6) =
1

3

(∣∣∣ det[A1, A2, A3, A4, A5]
∣∣∣+ ∣∣∣det[A2, A3, A4, A5, A6]

∣∣∣)
=

1

3

∣∣∣det[A1, A2, A3, A4, A5]− det[A2, A3, A4, A5, A6]
∣∣∣

and

vol(A1, A2A3A4A5, O) =
1

3

∣∣∣det[A1, A2, A3, A4, A5]
∣∣∣,

vol(O,A2A3A4A5, A6) =
1

3

∣∣∣det[A2, A3, A4, A5, A6]
∣∣∣.

Proof. Applying theorem 2.2 and lemma 2.6, we have

vol(A1, A2A3A4A5, A6) =
1

3

∣∣∣det[A1, A2, A3, A4, A5, A6]
∣∣∣

=
1

3

∣∣∣det[A1, A2, A3, A4, A5]− det[A2, A3, A4, A5, A6]
∣∣∣.

Decomposing an octahedron into two appropriate octahedra (see Fig. 3), we ob-
tain

vol(A1, A2A3A4A5, A6) = vol(A1, A2A3A4A5, O) + vol(O,A2A3A4A5, A6)

=
1

3

(∣∣∣ det[A1, A2, A3, A4, A5, O]
∣∣∣+ ∣∣∣det[O,A2, A3, A4, A5, A6]

∣∣∣)
=

1

3

(∣∣∣ det[A1, A2, A3, A4, A5]
∣∣∣+ ∣∣∣det[A2, A3, A4, A5, A6]

∣∣∣) .
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Fig. 3: An octahedron decomposed into two octahedra.

The other formulas follow from the above theorem 2.2 and equations (14)–(15)
from [6]. �

3. Volumes of triangular prisms and truncated
triangular prisms

Lemma 3.1. Let A1, A2, A3, A4, A5, A6 be vertices of a triangular prism (see Fig. 4)
in R3 such that Ai+3 = Ai + T , i = 1, 2, 3, for some vector T ∈ R3. Then

(a) det[A1, A2, A3, A4, A5, A6] = det[A1, A2, A3, A4] + det[A3, A4, A5, A6].

(b) det[A1, A2, A3, A4] = det[A3, A4, A5, A6],

Proof. Applying definition 1.1, we obtain

det[A1, A2, A3, A4, A5, A6]− det[A1, A2, A3, A4]− det[A3, A4, A5, A6]

= det[A1, A2, A2 + T ]− det[A1, A2, A3 + T ]− det[A1, A3, A2 + T ]

+ det[A1, A3, A3 + T ] + det[A1, A1 + T,A2 + T ]− det[A1, A1 + T,A3 + T ]

+ det[A1, A2 + T,A3 + T ] + det[A2, A3, A2 + T ]− det[A2, A3, A3 + T ]

−det[A2, A1 + T,A2 + T ] + det[A2, A1 + T,A3 + T ]− det[A2, A2 + T,A3 + T ]

= 0.

Similarly, we have
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Fig. 4: A triangular prism.

det[A1, A2, A3, A4]− det[A3, A4, A5, A6]

= det[A1, A2, A3]− det[A1, A2, A1 + T ] + det[A1, A3, A1 + T ]− det[A2, A3, A1 + T ]

−
(
det[A3, A1 + T,A2 + T ]− det[A3, A1 + T,A3 + T ] + det[A3, A2 + T,A3 + T ]

−det[A1 + T,A2 + T,A3 + T ]
)

= 0. �

Theorem 3.2. Let A1, A2, A3, A4, A5, A6 be vertices of a triangular prism (see
Fig. 4) in R3 such that Ai+3 = Ai +T , i = 1, 2, 3, for some vector T ∈ R3. Then the
volume of this prism, vol(A1A2A3, A4A5A6), is equal to

vol(A1A2A3, A4A5A6) =
1

4

∣∣∣det[A1, A2, A3, A4, A5, A6]
∣∣∣

=
1

2

∣∣∣det[A1, A2, A3, C]
∣∣∣+ 1

2

∣∣∣ det[A4, A5, A6, C]
∣∣∣,

=
∣∣∣det[A1, A2, A3, S]

∣∣∣,
where

S =
1

6

6∑
i=1

Ai

is the center of mass of the prism and C is an arbitrary point which lies on either
of the planes determined by A1, A2, A3 and A4, A5, A6, or between them.
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Proof. The formulas

vol(A1A2A3, A4A5A6) =
1

2

∣∣∣det[A1, A2, A3, C]
∣∣∣+ 1

2

∣∣∣ det[A4, A5, A6, C]
∣∣∣,

=
∣∣∣det[A1, A2, A3, S]

∣∣∣,
follow from formula 2 for tetrahedron (see Fig. 4).

Letting C = A4 and applying lemma 3.1, we have

vol(A1A2A3, A4A5A6) =
1

2

∣∣∣det[A1, A2, A3, C]
∣∣∣

=
1

4

∣∣∣det[A1, A2, A3, A4] + det[A3, A4, A5, A6]
∣∣∣

=
1

4

∣∣∣det[A1, A2, A3, A4, A5, A6]
∣∣∣.

�

Lemma 3.3. Let A1, A2, A3, A4, A5, A6 be vertices of a truncated triangular prism
(see Fig. 5) in R3 such that the triangular faces are determined by A1, A2, A3 and
A4, A5, A6, the vertices A4, A5, A6 lie on the same side of the plane determined by
A1, A2, A3, and the edges joining Ai and Ai+3 for i = 1, 2, 3 are parallel to each
other. If

S =
1

6

6∑
i=1

Ai

is the center of mass of the prism then

(a) det[A1, A2, A3, S] =−
1

2
(det[A1, A2, A4, S] + det[A2, A3, A5, S]

+ det[A3, A4, A6, S])

=
1

2
(det[A1, A3, A4, S] + det[A2, A4, A5, S]

+ det[A3, A5, A6, S])

=−det[A4, A5, A6, S],

(b) sgn(det[A1, A2, A4, S]) = sgn(det[A2, A3, A5, S]) = sgn(det[A3, A4, A6, S])

=− sgn(det[A1, A3, A4, S]) = − sgn(det[A2, A4, A5, S])

=− sgn(det[A3, A5, A6, S]),

where sgn denotes the signum function.

Proof. Let
A4 = A1 + αT, A5 = A2 + βT, A6 = A3 + γT

for some α, β, γ ∈ R and T ∈ R3. We have

S =
1

3
(A1 +A2 +A3) + ωT,
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Fig. 5: A truncated triangular prism.

where we denoted
ω =

1

6
(α+ β + γ).

Applying definition 1.1 we obtain

det[A1, A3, A4, S] = det[A1, A3, A1 + αT ]

−det[A1, A3,
1

3
(A1 +A2 +A3) + ωT ]

+ det[A1, A1 + αT,
1

3
(A1 +A2 +A3) + ωT ]

−det[A3, A1 + αT,
1

3
(A1 +A2 +A3) + ωT ]

= −1

3
(det[A1, A2, αT ]− det[A1, A3, αT ] + det[A2, A3, αT ]) .

Similarly, we obtain

det[A1, A2, A4, S] =
1

3
(det[A1, A2, αT ]− det[A1, A3, αT ] + det[A2, A3, αT ])

= − det[A1, A3, A4, S],

and

det[A2, A3, A5, S] = −det[A2, A4, A5, S](4)

=
1

3
(det[A1, A2, βT ]− det[A1, A3, βT ] + det[A2, A3, βT ]) ,

det[A3, A4, A6, S] = −det[A3, A5, A6, S](5)

=
1

3
(det[A1, A2, γT ]− det[A1, A3, γT ] + det[A2, A3, γT ]) .
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Moreover, we have

det[A1, A2, A3, S] = det[A1, A2, A3]− det[A1, A2,
1

3
(A1 +A2 +A3) + ωT ]

+ det[A1, A3,
1

3
(A1 +A2 +A3) + ωT ]

−det[A2, A3,
1

3
(A1 +A2 +A3) + ωT ]

= −det[A1, A2, ωT ] + det[A1, A3, ωT ]− det[A2, A3, ωT ]

= −1

2
(det[A1, A2, A4, S] + det[A2, A3, A5, S] + det[A3, A4, A6, S])

and

det[A4, A5, A6, S] = det[A1 + αT,A2 + βT,A3 + γT ]

−det[A1 + αT,A2 + βT,
1

3
(A1 +A2 +A3) + ωT ]

+ det[A1 + αT,A3 + γT,
1

3
(A1 +A2 +A3) + ωT ]

−det[A2 + βT,A3 + γT,
1

3
(A1 +A2 +A3) + ωT ]

= det[A1, A2, ωT ]− det[A1, A3, ωT ] + det[A2, A3, ωT ]

= −1

2
(det[A1, A3, A4, S] + det[A2, A4, A5, S] + det[A3, A5, A6, S]).

It follows from the above calculations that

det[A4, A5, A6, S] = −det[A1, A2, A3, S],

which completes the proof of (a).
To prove (b) we proceed analogously as in the proof of (a) and (b) of lemma 2.1.

Let

A
(4)
1 = A1 −A4, A

(4)
2 = A2 −A4, A

(4)
5 = A5 −A4 and S(4) = S −A4.

Applying theorem 2 from [6], theorem 2.6 from [1], and then equation (14) from [6],
we have

det[A1, A2, A4, S] · det[A2, A4, A5, S] = det[A
(4)
1 , A

(4)
2 , 0, S(4)] · det[A(4)

2 , 0, A
(4)
5 , S(4)]

= (−det[A
(4)
2 , S(4), A

(4)
1 ]) · (−det[A

(4)
2 , S(4), A

(4)
5 ])

= 〈A(4)
2 × S4, A

(4)
1 〉 · 〈A

(4)
2 × S4, A

(4)
5 〉.

Since the center of mass S is situated inside the prism, A1 and A5 are located on
opposite sides of the plane containing A2, A4 and S. Therefore

sgn(det[A1, A2, A4, S]) = − sgn(det[A2, A4, A5, S]).

Using similar arguments, we conclude that

sgn(det[A1, A3, A4, S]) = − sgn(det[A3, A4, A6, S]),

sgn(det[A2, A3, A5, S]) = − sgn(det[A3, A5, A6, S]).

To finish the proof of (b) we only need to use equations 4 and 5. �
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Theorem 3.4. Let A1, A2, A3, A4, A5, A6 be vertices of a truncated triangular prism
(see Fig. 5) in R3 such that the triangular faces are determined by A1, A2, A3 and
A4, A5, A6, the vertices A4, A5, A6 lie on the same side of the plane determined by
A1, A2, A3, and the edges joining Ai and Ai+3 for i = 1, 2, 3 are parallel to each
other. Then the volume of this prism, vol(A1A2A3, A4A5A6), is equal to

vol(A1A2A3, A4A5A6) =
∣∣∣det[A1, A2, A3, S]

∣∣∣ = ∣∣∣det[A4, A5, A6, S]
∣∣∣,

where S = 1
6

6∑
i=1

Ai is the center of mass of the prism.

Proof. Decomposing the prism into eight tetrahedrons and then using formula 2 and
lemma 3.3, we obtain

6 vol(A1A2A3, A4A5A6) =
∣∣∣det[A1, A2, A3, S]

∣∣∣+ ∣∣∣det[A4, A5, A6, S]
∣∣∣

+
∣∣∣det[A1, A2, A4, S]

∣∣∣+ ∣∣∣det[A2, A4, A5, S]
∣∣∣

+
∣∣∣det[A1, A3, A4, S]

∣∣∣+ ∣∣∣det[A3, A4, A6, S]
∣∣∣

+
∣∣∣det[A2, A3, A5, S]

∣∣∣+ ∣∣∣det[A3, A5, A6, S]
∣∣∣

= 2
∣∣∣ det[A1, A2, A3, S]

∣∣∣
+
∣∣∣det[A1, A2, A4, S] + det[A2, A3, A5, S] + det[A3, A4, A6, S]

∣∣∣
+
∣∣∣det[A1, A3, A4, S] + det[A2, A4, A5, S] + det[A3, A5, A6, S]

∣∣∣
= 6

∣∣∣ det[A1, A2, A3, S]
∣∣∣.

�
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OBJĘTOŚCI WIELOŚCIANÓW WYRAŻONE
ZA POMOCĄ WYZNACZNIKÓW MACIERZY PROSTOKĄTNYCH

S t r e s z c z e n i e

W artykule podano, w jaki sposób można wyrazić objętości ośmiościanu, ostrosłupa
czworokątnego, graniastosłupa trójkątnego i graniastosłupa trójkątnego ściętego za pomocą
wyznaczników macierzy prostokątnych.

Słowa kluczowe: wyznacznik macierzy prostokątnej, objętość wielościanu
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ON THE DIFFERENTIAL SUBORDINATION
OF HARMONIC MEAN TO A LINEAR FUNCTION

Summary
In this paper we examine the differential subordination related to the harmonic mean.

For a dominant being a linear function we improve the general result of [2].

Keywords and phrases: differential subordination, harmonic mean, arithmetic mean, geo-
metric mean, convex function

1. Introduction

Let D be a domain in C and H(D) be the class of all analytic functions f : D → C.
Let H := H(D), where D := {z ∈ C : |z| < 1}. Let A be the subclass of H of
functions f normalized by f(0) := 0 and f ′(0) := 1, and S be the subclass of A of
univalent functions.

A function f ∈ H is said to be subordinate to a function F ∈ H if there exists
ω ∈ H such that ω(0) := 0, ω(D) ⊂ D and f = F ◦ ω in D. We write then f ≺ F.

When F is univalent, then

(1.1) f ≺ F ⇔ (f(0) = F (0) ∧ f(D) ⊂ F (D)) .

Let β ∈ [0, 1] and a, b ∈ C. When b+ β(b− a) 6= 0, the harmonic mean of a and
b is given as

ab

b+ β(a− b)
.
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Definition 1.1. Let β ∈ [0, 1] and Φ ∈ H(D). By H(β,Φ) we denote the subclass of
H of all nonconstant functions p such that p(D) ⊂ D and the function

D 3 z 7→ p(z)(p(z) + zp′(z)Φ(p(z)))

p(z) + (1− β)zp′(z)Φ(p(z))

is either analytic or has only removable singularities with the analytic extension
on D.

For β ∈ [0, 1], Φ ∈ H(D), p ∈ H(β,Φ) and a univalent function h ∈ H, in [3]
and [2] it were started the studies of the differential subordination related to the
harmonic mean of the type

(1.2)
p(z)(p(z) + zp′(z)Φ(p(z)))

p(z) + (1− β)zp′(z)Φ(p(z))
≺ h(z), z ∈ D.

The above differential subordination with β := 1/2 and selected functions Φ and h
was considered also in [6]. In this paper we continue the research of the differential
subordination of the form (1.2) when h is a linear function.

Let us recall that the differential subordinations related to the arithmetic mean
as well as to the geometric mean were studied by various authors. Given α ∈ [0, 1],

the differential subordination related to the arithmetic mean is given as follows:

p(z) + αzp′(z)Φ(p(z)) ≺ h(z), z ∈ D.

The details and further references see [10, pp. 121–131]. The differential subordina-
tion related to the geometric mean was introduced in [5]. For further results in this
direction see e.g., [7], [8], [9], [4] and [1]. We omit the details because the description
requires some additional notation.

A function f ∈ H is said to be convex if it is univalent and f(D) is a convex
domain.

Let us we introduce the subclass Q (for details on corners of curves, see e.g., [11,
pp. 51–65]). Let T := {z ∈ C : |z| = 1}.

Definition 1.2. By Q we denote the class of convex functions h with the following
properties:

(a) h(D) is bounded by finitely many smooth arcs which form corners at their end
points (including corners at infinity),

(b) E(h) is the set of all points ζ ∈ T which corresponds to corners h(ζ) of ∂h(D),

(c) h′(ζ) 6= 0 exists at every ζ ∈ T \ E(h).

In [2] it was shown:

Theorem 1.3. Let β ∈ [0, 1], h ∈ Q with 0 ∈ h(D), and Φ ∈ H(D) be such that
D ⊃ h(T \ E(h)) and

(1.3) Re Φ(h(ζ)) ≥ 0, Φ(h(ζ)) 6= 0, ζ ∈ T \ E(h).
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If p ∈ H(β,Φ), p(0) = h(0) and

(1.4)
p(z)(p(z) + zp′(z)Φ(p(z)))

p(z) + (1− β)zp′(z)Φ(p(z))
≺ h(z), z ∈ D,

then

(1.5) p ≺ h.

The assumption that 0 ∈ h(D) as well as the condition (1.3) are essentially re-
quired for the proof of the above theorem. In what follows we improve the above
theorem however with a linear function h and for selected functions Φ. In Theo-
rem 2.2 with Φ ≡ 1 we estimate the first coefficient h′(0) of h for which h(D) is
a disk whose closure omits the origin however from (1.4) it follows (1.5). In Theo-
rem 2.5 with Φ = 1/w, w 6= 0, we do the same and moreover we find the range of
h′(0) where the assumption (1.3) is failed to be true, but (1.4) still implies (1.5).

2. Main results

Given z0 ∈ C and r > 0, let D(z0, r) := {z ∈ C : |z − z0| < r} and Dr := D(0, r).

The lemma below is a special case of Lemma 2.2d [10, p. 22].

Lemma 2.1. Let h ∈ Q and p ∈ H be a nonconstant function with p(0) := h(0). If
p is not subordinate to h, then there exist z0 ∈ D \ {0} and ζ0 ∈ T \ E(h) such that

(2.1) p
(
D|z0|

)
⊂ h(D),

(2.2) p(z0) = h(ζ0)

and for some m ≥ 1,

(2.3) z0p
′(z0) = mζ0h

′(ζ0).

Write H1(β) in case when Φ ≡ 1. For M ∈ (0, β/(2 − β)] and h being a linear
function the theorem below extends Theorem 1.3.

Theorem 2.2. Let β ∈ (0, 1]. If p ∈ H1(β), p(0) := 1,

(2.4) M ∈ (0, β/(2− β)] ∪ [1,+∞) ,

and

(2.5)
∣∣∣∣ p(z)(p(z) + zp′(z))

p(z) + (1− β)zp′(z)
− 1

∣∣∣∣ < M, z ∈ D,

then

(2.6) |p(z)− 1| < M, z ∈ D.
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Proof. Fix β ∈ (0, 1] and M satisfying (2.4).
1. Let h(z) := 1+Mz, z ∈ D. Since h is univalent, p(0) = h(0) = 1 and (2.6) can

be replaced by the inclusion p(D) ⊂ h(D) = D(1,M), by using (1.1) the condition
(2.6) is equivalent to the subordination p ≺ h.

When M ≥ 1, then 0 ∈ h(D) = D(1,M) and the assertion of the theorem follows
directly from Theorem 1.3. However the proof which will demonstrate below confirms
this fact again.

2. Suppose, on the contrary that p is not subordinate to h. Since h ∈ Q with
E(q) = ∅, from Lemma 2.1 it follows that there exist z0 ∈ D \ {0} and ζ0 ∈ T such
that (2.1)–(2.3) hold. Thus

(2.7) p(z0) = 1 +Mζ0

and for some m ≥ 1,

(2.8) z0p
′(z0) = mMζ0.

Hence

(2.9)
∣∣∣∣ p(z0)(p(z0) + z0p

′(z0))

p(z0) + (1− β)z0p′(z0)
− 1

∣∣∣∣
=

∣∣∣∣p2(z0) + p(z0)z0p
′(z0)− p(z0)− (1− β)z0p

′(z0)

p(z0) + (1− β)z0p′(z0)

∣∣∣∣
=

∣∣∣∣ (1 +Mζ0)2 + (1 +Mζ0)mMζ0 − 1−Mζ0 − (1− β)mMζ0
1 +Mζ0 + (1− β)mMζ0

∣∣∣∣
=

∣∣∣∣Mζ0 +M2ζ20 +mM2ζ20 + βmMζ0
1 + (1 + (1− β)m)Mζ0

∣∣∣∣
= M

∣∣∣∣ 1 + βm+ (1 +m)Mζ0
1 + (1 + (1− β)m)Mζ0

∣∣∣∣ .
Now we prove that

(2.10)
∣∣∣∣ 1 + βm+ (1 +m)Mζ0
1 + (1 + (1− β)m)Mζ0

∣∣∣∣ ≥ 1,

which together with (2.9) contradicts (2.5). We have

(2.11) |1 + βm+ (1 +m)Mζ0|2 − |1 + (1 + (1− β)m)Mζ0|2

= (1 + βm)2 + 2M(1 +m)(1 + βm) Re
(
ζ0
)

+ (1 +m)2M2

−
(
1 + 2M(1 + (1− β)m) Re

(
ζ0
)

+ (1 + (1− β)m)2M2
)

= 2βm+ β2m2 + 2 ((1 +m)(1 + βm)− (1 + (1− β)m))M Re
(
ζ0
)

+
(

(1 +m)2 − (1 + (1− β)m)
2
)
M2

= βm
(
(2 + βm) + 2(2 +m)M Re

(
ζ0
)

+ (2 + (2− β)m)M2
)

≥ βm
(
(2 + (2− β)m)M2 − 2(2 +m)M + (2 + βm)

)
= βm(2 + (2− β)m)(M − 1)

(
M − 2 + βm

2 + (2− β)m

)
.
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It remains to show that for every m ≥ 1,

(2.12) (M − 1)

(
M − 2 + βm

2 + (2− β)m

)
≥ 0.

Since the function
[1,+∞) 3 m 7→ 2 + βm

2 + (2− β)m

is strictly decreasing and (2 + β)/(4− β) ≤ 1, for every m ≥ 1 we have
β

2− β
<

2 + βm

2 + (2− β)m
≤ 2 + β

4− β
≤ 1.

Hence it follows at once that the inequality (2.12) holds. �

When β := 1/2, we get the following result which in case of M ∈ (0, 1/3) was
shown in [6].

Corollary 2.3. If p ∈ H1(1/2), p(0) := 1, M ∈ (0, 1/3] ∪ [1,+∞) and∣∣∣∣2p(z)(p(z) + zp′(z))

2p(z) + zp′(z)
− 1

∣∣∣∣ < M, z ∈ D,

then
|p(z)− 1| < M, z ∈ D.

Since H1 ⊂ H, for β := 1 we have

Corollary 2.4. If p ∈ H, p(0) := 1, M > 0 and

|p(z) + zp′(z)− 1| < M, z ∈ D,

then
|p(z)− 1| < M, z ∈ D.

For β ∈ (0, 1] and Φ(w) := 1/w, w ∈ C \ {0}, let H2(β) := H(β,Φ). For M 6= 1

satisfying (2.13) and h being a linear function the theorem below extends Theo-
rem 1.3.

Theorem 2.5. Let β ∈ (0, 1]. If p ∈ H2(β), p(0) := 1,

(2.13) M ∈
(

0,
β

2− β

]
∪
[
1,

1

4

(
6− β +

√
20(1− β) + β2

)]
,

and

(2.14)

∣∣∣∣∣∣∣∣
p(z)

(
p(z) +

zp′(z)

p(z)

)
p(z) + (1− β)

zp′(z)

p(z)

− 1

∣∣∣∣∣∣∣∣ < M, z ∈ D,
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then
|p(z)− 1| < M, z ∈ D.

Proof. Fix β ∈ (0, 1] and M satisfying (2.13). We repeat the argumentation of Part
1 of the proof of Theorem 2.2. Note that only forM := 1 we have 0 ∈ h(D) = D(1.1)

and then the condition (1.3) is also true. For other M Theorem 1.3 can not be
applied directly.

Suppose, on the contrary that p is not subordinate to h. Then the condition
(2.1)–(2.3) and further (2.7)–(2.8) hold. Hence

(2.15)

∣∣∣∣∣∣∣∣
p(z0)

(
p(z0) +

z0p
′(z0)

p(z0)

)
p(z0) + (1− β)

z0p
′(z0)

p(z0)

− 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣ p3(z0) + p(z0)z0p
′(z0))

p2(z0) + (1− β)z0p′(z0)
− 1

∣∣∣∣
=

∣∣∣∣ (1 +Mζ0)3 + (1 +Mζ0)mMζ0 − (1 +Mζ0)2 − (1− β)mMζ0
(1 +Mζ0)2 + (1− β)mMζ0

∣∣∣∣
=

∣∣∣∣ (1 +Mζ0)2Mζ0 +mM2ζ20 + βmMζ0
(1 +Mζ0)2 +mMζ0 − βmMζ0

∣∣∣∣
= M

∣∣∣∣ (1 +Mζ0)2 +mMζ0 + βm

(1 +Mζ0)2 +mMζ0 − βmMζ0

∣∣∣∣ .
Now we prove that

(2.16)
∣∣∣∣ (1 +Mζ0)2 +mMζ0 + βm

(1 +Mζ0)2 +mMζ0 − βmMζ0

∣∣∣∣ ≥ 1.

which together with (2.15) contradicts (2.14). We have

(2.17)
∣∣(1 +Mζ0)2 +mMζ0 + βm

∣∣2 − ∣∣(1 +Mζ0)2 +mMζ0 − βmMζ0
∣∣2

=
∣∣(1 +Mζ0)2 +mMζ0

∣∣2 + β2m2

+2βmRe
{

(1 +Mζ0)2 +mMζ0
}

−
∣∣(1 +Mζ0)2 +mMζ0

∣∣2 − β2m2M2

+2βmRe
{(

(1 +Mζ0)2 +mMζ0
)
Mζ0

}
= β2m2 − β2m2M2

+2βmRe
{(

1 + 2Mζ0 +M2ζ20 +mMζ0
) (

1 +Mζ0
)}

= β2m2 − β2m2M2 + 2βm

×Re
{

1 +Mζ0 + 2Mζ0 + 2M2 +M2ζ20 +M3ζ0 +mMζ0 +mM2
}

= β2m2 − β2m2M2 + 2βm
(
1 + 2M2 +mM2

)
+2βmM Re

{
(M2 + 3 +m)ζ0 +Mζ20

}
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= βm
(
(4 + 2m− βm)M2 + 2 + βm

+2M Re
{

(M2 + 3 +m)ζ0 +Mζ20
})
.

Let ζ0 := eiθ0 , θ0 ∈ [0, 2π]. Then

Re
{

(M2 + 3 +m)ζ0 +Mζ20
}

= (M2 + 3 +m) cos θ0 +M cos(2θ0).

Consider the function

[0, 2π] 3 θ 7→ s(θ) := (M2 + 3 +m) cos θ +M cos(2θ).

Note that s′(θ) = 0, θ ∈ [0, 2π], if and only if(
M2 + 3 +m+ 4M cos θ

)
sin θ = 0,

i.e., if only if θ ∈ {0, π, 2π} or

(2.18) cos θ = −M
2 + 3 +m

4M
.

But, since m ≥ 1 and M 6= 2, which follows directly from (2.13), we have

M2 + 3 +m

4M
≥ M2 + 4

4M
> 1.

Thus the equation (2.18) has no solution. Consequently,

min
θ∈[0,2π]

s(θ) = s(π) = −M2 +M − 3−m.

Hence and by (2.17) we obtain∣∣(1 +Mζ0)2 +mMζ0 + βm
∣∣2 − ∣∣(1 +Mζ0)2 +mMζ0 − βmMζ0

∣∣2
≥ βm

(
(4 + 2m− βm)M2 + 2 + βm+ 2M(−M2 +M − 3−m)

)
= βm

(
−2M3 + (6 + 2m− βm)M2 − (6 + 2m)M + 2 + βm

)
= βm(M − 1)

(
−2M2 + (4 + 2m− βm)M − 2− βm

)
= −2βm(M − 1)(M −M1(m))(M −M2(m)),

where
M1(m) :=

1

4

(
4 + (2− β)m−

√
16(1− β)m+ (2− β)2m2

)
and

M2(m) :=
1

4

(
4 + (2− β)m+

√
16(1− β)m+ (2− β)2m2

)
.

It remains to show that for every m ≥ 1,

(2.19) (M − 1)(M −M1(m))(M −M2(m)) ≤ 0.

As easy to check

(2.20) 0 < M1(m) ≤ 1, M2(m) > 1, m ≥ 1.

Moreover

M ′
1(m) :=

1

4

(
2− β − 8(1− β) + (2− β)2m√

16(1− β)m+ (2− β)2m2

)
, m ≥ 1.
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Since the inequality

(2− β)
√

16(1− β)m+ (2− β)2m2 ≤ 8(1− β) + (2− β)2m

equivalently written as

(2− β)2
(
16(1− β)m+ (2− β)2m2

)
≤
(
8(1− β) + (2− β)2m

)2
is evidently true, so the function M1 is decreasing with

lim
m→+∞

M1(m)

= lim
m→+∞

4 + 2βm

4 + (2− β)m+
√

16(1− β)m+ (2− β)2m2
=

β

2− β
.

Hence and by (2.20) we have

(2.21)
β

2− β
< M1(m) ≤ 1, m ≥ 1.

Since the function M2 is obviously increasing so hence and by (2.20) for m ≥ 1 we
have

(2.22) 1 <
1

4

(
6− β +

√
20(1− β) + β2

)
= M2(1) < M2(m).

Taking now into account (2.21) and (2.22) we see that the inequality (2.19) holds
which shows (2.16). �

For β := 1 we have

Theorem 2.6. If p ∈ H2(1), p(0) := 1, M ∈ (0, 3/2] and∣∣∣∣p(z) +
zp′(z)

p(z)
− 1

∣∣∣∣ < M, z ∈ D,

then
|p(z)− 1| < M, z ∈ D.
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O PODPORZA̧DKOWANIU RÓŻNICZKOWYM ŚREDNIEJ
HARMONICZNEJ FUNKCJI LINIOWEJ

S t r e s z c z e n i e

Dla β ∈ [0, 1] i a, b ∈ C takich, że b+ β(b− a) 6= 0, wyrażenie ab/(b+ β(a− b)) oznacza
średnia̧ harmoniczna̧ liczb a i b. Dla β ∈ (0, 1] i M > 0 badane jest podporza̧dkowanie
różniczkowe

p(z)(p(z) + zp′(z)Φ(p(z)))

p(z) + (1− β)zp′(z)Φ(p(z))
≺ 1 +Mz, z ∈ D,

w przypadku, gdy Φ ≡ 1 oraz, gdy Φ(w) := 1//w, w ∈ C\{0}. Wyznaczony jest zbiór tych
M, dla których z powyższego podporza̧dkowania wynika podporza̧dkowanie

p(z) ≺ 1 +Mz, z ∈ D.

Słowa kluczowe: podporza̧dkowanie różniczkowe, średnia harmoniczna, średnia arytmety-
czna, średnia geometryczna, funkcja wypukła
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Summary
In this paper, we discuss the important contribution of Józef Puzyna into development
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1. Introduction

The beginning of Polish Mathematical School come back to the XIX century. The

higher school of Kraków and Lviv played a particular role in that period. Józef

Puzyna – professor of Lviv University was the most meritorious person for that

time. Let us mention the most important facts of his biography [1, 2, 4, 5].

Józef Puzyna was born in 1856 in Nowe Martynowo in Ma lopolska (today

Ukraine). First he finished a grammar school in Lviv; after that he started his study

at the University of Lviv (1875–1882), where passed his final teacher’s exam in 1882.

He took the doctor’s degree of philosophy in 1883. Next, he continued his study at

Berlin University (1883–1885). There were so famous scientists as K. Weierstrass,

O. Fuchs, L. Kronecker and others, and Puzyna could attend to their lectures. These

mathematicians exerted a powerful influence on the subject of his research work.

In 1885 he was qualified as an assistant professor at University of Lviv, in 1889 he

became associate professor and three years later full professor. In 1894/95 he was
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the dean of Department of Philosophy and during years 1904/05 he was the rec-

tor of University of Lviv. In 1900 he was chosen to be a correspondent member of

Academy of Knowledge in Kraków. Since 1917 he was the chairman of Lviv Math-

ematical Society. His main interest was theory of integral equations and theory of

analytic functions.

2. Puzyna’s research work

The research work of Puzyna comes in disadvantage period for development of sci-

ence in Poland. Puzyna worked in the Chair of Mathematics at University of Lviv.

During a number years as a professor he fulfilled his obligations very conscientiously.

His main effort was applied towards to deliver the best exhaustive selecton of lec-

tures.

The proper research work of Puzyna developed stronger in the first period of

his activity (till 1900). There were 15 research works and articles of that period of

his life. They were published in Dissertations of Academy of Knowledge in Kraków,

in Mathematical and Physical Works, in Monatshefte für Mathematik und Physik

and the like at last main work of his life, two-volume monograph Theory of analytic

functions (Teorya funkcyj analitycznych) published in 1898–1900. In that work he

collected important research works of Weierstrass, Cauchy, Riemann and others,

concerning analytic functions and information of set theory, topology, theory of

groups and permutations as well [2, 3, 8–10]. Below we present the list of works of

Puzyna [1]

1. O pozornie dwuwartościowych określonych ca lkach podwójnych. Pamiȩtniki

Wydz. Matem.-Przyr. Akad. Umiej. vol. IX (1884) 1–15.

2. O zastosowaniu uogólnionych form interpolacyjnych Lagrange’a. ibid. vol. XIV

(1888) 1–55.

3. O tak zwanych miejscach skupienia i ich zastosowaniu w Analizie. Muzeum IV

(1888).

4. Z Analizy ibid.

5. O pewnym twierdzeniu Foliego. Pamiȩtniki Wydz. Matem.-Przyr. Akad. Umiej.

vol. XVII (1889) 1–22.

6. Prof. Wawrzyniec Żmurko; jego życie i dzie la. Kosmos XIV.

7. Kilka uwag o ogólnej teorji krzywych algebraicznych. Rozpr. Akad. Umiej. vol.

XXII (1891) 1–29.

8. Über den Laguerre’schen Rang einer eindeutigen analytischen Function mit

unendlich vielen Nullstellen. Monatshefte für Mathematik und Physik vol. III

(1892) 1–15.

9. O wartościach funkcyj analitycznej na spó ĺsrodkowych krȩgach z ko lem zbież-

ności jej elementu. Rozpr. Akad. Umiej. vol. XXVI (1883) 200–204.
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10. Z teoryi n-krotnych ca lek określonych. Prace matem.-fizyczne vol. IV (1892)

1–30.

11. O rozwiniȩciach zbieżnych wewna̧trz krzywych Cassini’ego. ibid. vol. V (1894)

21–46.

12. Über eine methodische Bildung der analytischen Ausdrücke
∑
fv(x),∑

fv(x, y) von constanten Werten. Monatshefte für Mathematik und Physik

vol. V (1894) 67–84.

13. O nierówności g ≥ |a0|. Prace matem.-fizyczne vol. VI (1895) 1–4.

14. Do teorji szeregów potȩgowych. Rozpr. Akad. Umiej. vol. XXXI (1896) 1–20.

15. O twierdzeniu upraszczaja̧cym obliczanie czynników wyk ladniczych w Weier-

strasowej teorji funkcyj eliptycznych. Prace matem.-fizyczne vol. X (1898) 8–15.

16. Teorja funkcyj analitycznych. vol.I (1898), vol. II (1900) Lwów.

17. O sumach nieskończenie wielu szeregów potȩgowych i o twierdzeniu Mittag-

Lefflera z teorji funkcyj. Rozpr. Akad. Umiej. vol. XLIII (1903) 1–3.

18. Geometrisches in der Weierstrassschen Theorie der algebraischen Funktio-

nen. Monatshefte für Mathematik und Physik vol. XX no. 1 (1909) 3–54,

193–241.

19. Metoda wprowadzania ca lek logarytmicznych równania różniczkowego dy
dx =

ax+by+...
a′x+by+... . Ksiȩga pamia̧tkowa ku uczczeniu 250-tej rocznicy za lożenia Uniw.

lwowskiego (1911) 3–8.

20. O systemach krzywych z grupa̧ preudoliniowych podstawień. Rozpr. Akad.

Umiej. vol. LI (19011) 1–124.

21. Zastosowanie równań ca lkowych do tworzenia równań różniczkowych zwycza-

jnych rzȩdu 1-go i 2-go i różniczkowych cza̧stkowych rzȩdu 1-go. Bulletin de

l’Acad. des sciences de Cracovie (1913) 356–379.

22. Zarys teorji równań ca lkowych. Wektor vol. II no. 8-9, 356–370, 406–417.

3. Integral equations in Puzyna’s didactical programme in the
deductive and historical aspects

As a professor, Puzyna always encouraged his students for independent work and he

supported them. Among students which worked under his protection were Franciszek

Leja, Hugo Steinhaus, Antoni  Lomnicki, Wac law Sierpiński, Stanis law Ruziewicz.

An important role in development of the Lviv Mathematical School and Puzyna’s

teaching played the two kind of seminars (lower and higher) organized by Puzyna

[4]. The partipants of these seminars were W. Lewicki, S. Ruziewicz, O. Nikodyn,

A.  Lomnicki. Puzyna persuaded W. Sierpinśki to apply for habilitation at the Uni-

versity of Lviv, who was also a supervisor of seminar in 1910. Below on Fig. 1 we

can see recommendation to pay gratification for J. Puzyna and W. Sierpiński for one

of the seminars.



132 A. Niemczynowicz and A. Bojarska-Soko lowska

Fig. 1: Recommendation to pay gratification for J. Puzyna and W. Sierpiński for one of the
seminars.
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Puzyna worked in the wide range of topics of lectures. There were lectures on

extensive presentation of the introduction to the sections, of theory of series, complex

numbers, set theory, substitutions, groups of invariants, integrals of Abel, elliptic

functions, harmonic and modular functions. The following list represents the titles

of lectures of Puzyna [1]

• Nowsze metody geometrji analitycznych [Modern Methods of Analytic Geom-

etry] from 1885

• Nowa geometrja. I [Modern Geometry I] from 1885/86, II from 1886, III from

1901

• Teorja funkcyj analitycznych [Theory of Analytic Functions] from 1886/87

• Teorja funkcyj eliptycznych [Theory of Elliptic Functions] from 1887/88

• Teoryja funkcyj Abela [Theory of Abelian Functions] from 1888/89

• Rachunek różniczkowy i wstȩp do Analizy [Differential Calculus and An Intro-

duction to Analysis] from 1889/90

• Geometrja analityczna na p laszczyźnie [Analytic Geometry on Surface] from

1889/90

• Rachunek ca lkowy [Integral Calculus] from 1890/91

• Teorja liczb I [Theory of Numbers I] from 1891/92

• Teorja substytucyj [Theory of Substitutions] from 1892

• Rachunek przemienności [Calculus of commutativity] from 1893

• Geometrja różniczkowa [Differential Geometry] from 1902/03

• Niezmienniki [Invariants] from 1908/09

• Funkcje wielościanów, modu lowe i eliptyczne [Functions of Polyhedrons, Mod-

ular and Elliptic] from 1908/09

• Ca lkowanie równań różniczkowych [Integration of Differential Equations] from

1910

• Odwzorowania cza̧steczkowe [Conformal Mapping] from 1910

• Równania Fredholma [Fredholm’s Equations] from 1908

• Wybrane ustȩpy z Algebry [Some Problems of Algebra]

• Geometja analityczna przestrzenna [Spatial Analytic Geometry]
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• Równania różniczkowe Liego [Lie Differential Equations]

• Z historji Matematyki [On History of Mathematics]

• Gwiazdy Mittag-Lefflera [The Mittag-Leffler Stars]

• Geometrja nieeuklidesowa [Non-Euclidean Geometry]

• Równania różniczkowe cza̧stkowe [Partial Differential Equations]

• Krzywe algebraiczne [Algebraic Curves]

• Równania różniczkowe liniowe [Linear Differential Equations]

In the last period of his life, he concentrated his research work on theory of

integral equations (a new mathematical area at that time). In 1907, during the X

Conventions of Polish Naturalists and Physicians in Lviv, he delivered the report on

Relations between a continuous group of Lie and integral equations (O zwia̧zku miȩdzy

grupami cia̧g lymi Liego a równaniami ca lkowymi). In 1913 he published Application

of differential equations for constructing integral equations (Zastosowanie równań

ca lkowych do tworzenia równań różniczkowych ) in Dissertations of Academy of

Knowledge. He built differential equations, putting down for their integrals such

conditions, that leading out of integral equations the solution. In the journal Vector

he delivered an article under the title Outline of the theory integral equations (Zarys

teorji równań ca lkowych). That article contained the lectures, published in 1913 as

a supplementary course for teachers of secondary schools in Lviv. On the few pages

he analyzed the important results about the integral equations based on works of

such famous mathematicians as Fredholm, Hilbert, Schmidt, and others [11].

3.1. Kernel-Green function

Let us describe briefly the theory of integral equations presented by Puzyna in his

works [11].

The equations of the form

f(s) = ϕ(s)− λ
b∫
a

K(s, t)ϕ(t)dt,(1)

ϕ(s)− λ
b∫
a

K(s, t)ϕ(t)dt = 0(2)

are called integral equations or Fredholm’s equations, where K(s, t) is called the

kernel of the integral equation and a and b are the limits of integration. We can

easily observe that the unknown function ϕ(t) appears under the integral sign. Type

(1) represents inhomogeneous equations of the second order, type (2) – homogeneous
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equations of the first order. K = K(s, t) supposed to be a finite continuous function

of two independent real variables s, t in the segment (s, t) = (a, b). The function f(s)

is continuous and finite in the segment s = (a, b). The constant coefficients which

are contained in K(s, t) and in f(s) are real. Parameter λ plays an important role

in the theory of Fredholm’s equations. It is unlimited and it can assume every real

or imaginary value.

As we can see, the lecture starts from introduction to the simplest terminology

of the theory of integral equations. At first he introduced the definitions of homo-

geneous and inhomogeneous integral equations (named by French mathematicians

– Fredholm’s equation). Further, he presented the methods of solving the integral

equations containing the Kernel-Green function [11] in the case of degenerate kernel.

At first, he considered the simplest form of the kernel.

He assumes for example, that in (1) he has

(3) K(s, t) = A1(s)B1(t),

then the kernel is the product of two functions, the first one depends on s and the

second depends on t. Then the equation (1) takes the form

(4) f(s) = ϕ(s)− λA1(s)

b∫
a

B1(t)ϕ(t)dt.

Let

(5)

b∫
a

B1(t)ϕ(t)dt = const.

Then

f(s) = ϕ(s)− λA1(s)C,(6)

f(t) = ϕ(s)− λA1(t)C.(7)

Substituting (7) into (3) he obtains

(8)

b∫
a

B1(t) [f(t) + λA1(t)C] dt = C,

after putting

b∫
a

B1f(t)dt = (B1, f) = (f,B1) = const.,

(9)

b∫
a

B1A1(t)dt = (B1, A1) = (A1, B1) = const.
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Assuming

(10) (B1, f) 6= 0, (B1, A1) 6= 0,

he obtains from (8)

(11) C =
(B1, f)

1− λ(A1, B1)
.

Inserting calculated C in (6) he has

(12) ϕ(s) = f(s) + λA1(s)
(B1, f)

1− λ(A1, B1)
.

When λ = 1/(A1, B1), the equation does not have finite solution. Therefore, it is

necessary reject the value of λ. Yet, when λ = 1
(A1,B1)

, it becomes a homogeneous

equation

(13) ϕ(s) = λA1(s)

b∫
a

B1(t)ϕ(t)dt

having a solution. Let λ be unrestricted in (13). Let introduce a constant C, then

ϕ(s) = λA1(s)C,(14)

ϕ(t) = λA1(s)C.(15)

Inserting (15) to (5) gives

(16)

b∫
a

B1(t)[λA1(t)C]dt = C,

and hence 1 − λ(A1, B1) = 0 or λ = 1/(A1, B1) with that single value of λ the

solution of equation exists (13) in the following form

(17) ϕ(s) =
A1(s)

A1, B1

b∫
a

B1(t)

[
A1(t)C

(A1, B1)

]
dt =

CA1(s)

(A1, B1)2
(A1, B1).

Takeing into account that C can be an unrestricted constant, the solution of (13)

can take the form

ϕ(s) = C ′A1(s),

where C ′ is the unrestricted constant, except for value of λ, for which we do not have

solution of the inhomogeneous equation, independent at all from that, how function

f(s) is, but depending only on the kernel and limit of integration.

3.2. Inhomogeneous equations with the general kernel

The next two steps, are to introduce the kernel in the general form and to find the

relation between the given kernel and solving kernel.

Let

(18) K(s, t) = A1(s)B1(t) + ... = An(s)Bn(t), n = 2, 3, ...
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be an integral equation which we receive in the form

(19) f(s) = ϕ(s)− λ
b∫
a

(
n∑
α=1

Aα(s)Bα(t)

)
ϕ(t)dt.

We put

(20)

b∫
a

Bα(t)ϕ(t)dt = Cα, α = 1, 2, ...

From (19) we obtain

ϕ(s) = f(s) + λ

n∑
α=1

CαAα(s),

(21)

ϕ(t) = f(t) + λ

n∑
α=1

CαAα(t),

where constants Cα needs to be determined, so that the equation (19) is satisfied.

We obtain

(22)

b∫
a

Bβ

[
f(t) + λ

n∑
α=1

CαAα(t)

]
dt = Cβ , β = 1, 2, ..., n.

Set

b∫
a

Bβ(t)f(t)dt = (Bβ , f) = (f,Bβ),

(23)

b∫
a

Bβ(t)Aα(t)dt = (Bβ , Aα) = (Aα, Bβ)Rα,β = Kαβ ,

for α, β = 1, 2, ..., n. Then the relations (22) take the form

(1− λK11)C1 − λK12C2 − ...− λK1nCn = (B1, f),

−λK21C1 + (1− λK22)C2 − ...− λK2nCn = (B2, f),(24)

· · ·
−λKn1C1 − λKn2C2 − ...+ (1− λKnn)Cn = (Bn, f).

In order to deduce finite and independent Cα form (24) it is necessary to satisfy

the condition D(λ) 6= 0, where D denotes the determinant of (24). We assume, that

λ differs from all the roots λα, α = 1, 2, ..., α of the equation D(λ) = 0, then Cα
calculated from equation (24) takes the following form
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(25) Cα =

 n∑
β=1

Wα,β(λ)(Bβ , f)

 · 1

D(λ)
, α = 1, 2, ..., n,

where Wα,β(λ) are the integral functions of values of parameter λ. Further we obtain

ϕ(s) =f(s) +
λ

D(λ)

{[
n∑
α=1

Wα1(λ)Aα(s)

]
(B1, f) + ...(26)

+

[
n∑
α=1

Wαn(λ)Aα(s)

]
(Bn, f)

}
.

Yet (Bα, f) =
∫
Bα(t)F (t)dt, α = 1, 2, ...n, and we can write

(27) ϕ(s) = f(s) + λ

∫ b

a

K(s, t, λ)f(t)dt,

where

K(s, t, λ) =
1

D(λ)

{[
n∑
α=1

Wα1
(λ)Aα(s)

]
(B1, f) + ...(28)

+

[
n∑
α=1

Wαn(λ)Aα(s)

]
(Bn, f)

}
.

K(s, t, λ) we call the kernel. It is independent of the function f(s). Therefore, all

inhomogenous equations with the kernel (18) and with the same limits of integration

will have the same solving kernel.

3.3. Relation between the given kernel and solving kernel

We put into the given equation function ϕ(s) represented in (27)

(29) f(s) = ϕ(s)− λ
b∫
a

K(s, t)ϕ(t)dt,

where K(s, t) has the form (18). We obtain

f(s) = f(s) + λ

b∫
a

K(s, t, λ)f(t)dt

−λ
b∫
a

K(s, t)

[
f(t) + λ

∫ b

a

K(t, τ, λ)f(τ)dτ

]
dt(30)

or

(31)

∫ b

a

[K(s, t, λ)−K(s, t)] f(t)dt− λ
∫ b

a

K(s, t)

[∫ b

a

K(t, τ, λ)f(τ)dτ

]
dt = 0.
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We exchange the variables of integration t and τ in (31). Further, we obtain∫ b

a

K(s, t, λ)−K(s, t)− λ
b∫
a

K(s, t)K(t, τ, λ)dτ

 dt = 0

for all s = (a, ..., b). And consequently

K(s, t, λ)−K(s, t)− λ
b∫
a

K(s, t)K(t, τ, λ)dτ = 0,(32)

K(s, t, λ)−K(s, t)− λ
b∫
a

K(t, τ, λ)K(s, t)dτ = 0.(33)

As we can see, between the given kernel and the solving kernel there are always

identical relations (32) and (33). Not repeated roots λ = λα of equation D(λ) = 0

are like that used in homogeneous equation giving finite solutions. On the other

hand, the inhomogeneous equation becomes homogeneous when we assume that the

function f(s) is identical to zero. Then the equation (24) becomes

(Bα, f) ≡ 0, α = 1, 2, ..., n.

The equations become homogeneous and the condition that Cα 6= 0 is D(λ) = 0.

Let λ′ be a single root of the above equation. From (24) we get the solution in

the form

C1 = CnD1(λ′), C2 = CnD2(λ′), . . . , Cn−1 = CnDn−1(λ′),

and return to (21); allowing f(s) = 0, we get

ϕ(s) = λ′Cn

n∑
β=1

Dβ(λ′)Aβ(s), Dn(λ′) = 1,

where Cn = const.

Let λ′ be a double root of equation D(λ) = 0. Then in D(λ′) = 0 for all subde-

terminants – they vanish, and equations (24) give

C1 = L1(Cn−1, λ
′), C2 = L2(Cn−1, Cn, λ

′), . . . , Cn+2 = Ln−2(Cn+1, Cn, λ
′),

where L1, . . . , Ln+2 are the linear homogeneous function of arbitrary Cn+1, Cn. Re-

turning to (21), we get

(34) ϕ(s) = Cn+1ψ(s, λ) + Cnψ2(s, λ).

In particular, for Cn−1 = 1, Cn = 0 we have ϕ(s) = ψ1(s, λ′) and for Cn−1 =

0, Cn = 1 we have ϕ(s) = ψ2(s, λ′).

Independently of the kernel K(s, t), if we know the function K(s, t, λ), which

(with K(s, t)) satisfies the relations (32) or (33), then every inhomogeneous integral

equation with the kernel K(s, t) has the following solution

ϕ(s) = f(s) + λ

∫ b

a

K(s, t, λ)F (t)dt.



140 A. Niemczynowicz and A. Bojarska-Soko lowska

K(s, t, λ) we call solving kernel. A kernel is here the so-called Green’s function.

To sum up this part of considerations concerning theory of integral equations

presented by Puzyna we can noticed that

• to a double root λ′ correspond two particular solutions of the homogenous

equation. The general solution is a homogeneous linear function (34) of these

solutions (analogous conclusion, when roots repeat in equation D(λ) = 0 three,

four times).

• All roots of the equations we call basic values.

• Every basic value λ′ used in the homogenous equation give one finite solution

of this equation. Every such solution we call basic function – it corresponds to

this value λ′. Basic values and basic function depend only on kernel.

3.4. Fredholm’s method

Now, follow Puzyna’s example, we present the Fredholms method of solving integral

equations.

Let us consider the determinant

D̄n(l) =

∣∣∣∣∣∣∣∣
1− lK11, −lK12, . . . , −lK1n

−lK21, 1− lK22, . . . , −lK2n

. . .

−lKn1, −lKn2, . . . , 1− lKnn

∣∣∣∣∣∣∣∣ ,
where Kαβ are given finite quantities; l is an arbitrary parameter. For simplification,

let ∣∣∣∣∣∣∣∣
Kρ1ρ1, Kρ1ρ2, . . . , Kρ1ρr
Kρ2ρ1, Kρ2ρ2, . . . , Kρ2ρr

. . .

Kρrρ1, Kρrρ2, . . . , Kρrρr

∣∣∣∣∣∣∣∣ = K

(
ρ1, ρ2, . . . , ρr
ρ1, ρ2, . . . , ρr

)

be the determinant Dn(l) developed according to the power of l; it takes the form

D̄n(l) = 1−
∑
ρ1

K

(
ρ1
ρ1

)
l +

∑
ρ1<ρ2

K

(
ρ1 ρ2
ρ1 ρ2

)
l2 + . . .

+ (−1)n+1
∑

ρ1<ρ2<...<ρn

K

(
ρ1 ρ2 . . . ρn
ρ1 ρ2 . . . ρn

)
ln.

In each of this sums we take ρ1, ρ2, . . . , ρn from the sequence of numbers 1, 2, . . . , n.

Within the sum
∑
ρ1<ρ2<...<ρn

we specially notice one addend, namely

lrK

(
t1, t2, . . . , tr
t1, t2, . . . , tr

)
.

When in the determinant in question the elements have indices tα, tβ from which the

first indicates its number, whereas the second one – the number of the column, and
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(t1, . . . , tn) has to be replaced by an unrestricted permutation, and the determinant

does not change its value. These permutations are r! When creating r! determinants,

in such a way, we obtain

(35) lrK

(
t1, t2, . . . , tr
t1, t2, . . . , tr

)
=
lr

r!

∑
r!

K

(
t1, t2, . . . , tr
t1, t2, . . . , tr

)
.

Now we complete permutation into set all rr variations with repetition. In these

complementary comparisons it will be identical to tα. The determinant which is

created on the ground of these variations will be zero. Let us sum up all the vanishing

determinants into the sum (35)

lrK

(
t1, t2, . . . , tr
t1, t2, . . . , tr

)
=
lr

r!

∑
rr

K

(
t1, t2, . . . , tr
t1, t2, . . . , tr

)
.

Then we obtain

(36) lr
∑

ρ1<ρ2<...<ρn

K

(
ρ1, ρ2, . . . , ρr
ρ1, ρ2, . . . , ρr

)
=
lr

r!

∑
rr

K

(
ρ1, ρ2, . . . , ρr
ρ1, ρ2, . . . , ρr

)
,

where the sum on the right hand-side treats for all nr variations with repetition

created from numbers 1, 2, . . . , n.

The function K(s, t) is given as a function of two variables s, t independent, finite

and continuous in the segment (s, t) = (a, . . . , b), a < b. We consider tρα , tρβ within

the Cartesian product of two segments, then K(tρα , tρβ ) is value of function K(s, t)

at (tρα , tρβ ). The number of these points amounts at n2.

Let

(37) K

(
s1, s2, . . . , sr
s1, s2, . . . , sr

)
=

∣∣∣∣∣∣
K(s1s1), K(s1s2), . . . , K(s1sr)

. . .

K(srs1), K(srs2), . . . , K(srsr)

∣∣∣∣∣∣
be function of r independent variables s1, s2, . . . , sr ∈ (a, . . . , b).

Let us define the points

t1 = a, t2 = a+ δ, . . . , tn+1 = b,

where δ = tρk+1
− tρk = ∆tρk , k = 1, 2, . . . , n and lr = λrδr = λr∆tρ1 . . .∆tρn for

unrestricted parameter λ. Further we obtain

(38) Dn(λ) =

∣∣∣∣∣∣∣∣
1− δλK(s1s1), −δλK(s1s2), . . . , −δλK(s1sn)

−δλK(s2s1), 1− δλK(s2s2), . . . , −δλK(s2sn)

. . .

−δλK(sns1), −δλK(sns2), . . . , 1− δλK(snsn)

∣∣∣∣∣∣∣∣ ,
where s1 = a, s2 = a+ δ, . . . , sn = b− δ. We can observe, that Dn(λ) is absolutely

eternally convergent series in parameter λ. Letting to the determinant Dn(λ) to its

limit, we can find the solution to the inhomogeneous equation of Fredholm
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ϕ(s) =
lim
n→∞

Dn,p(λ)

D(λ)
,

when D(λ) 6= 0 and

Dn,p(λ) =
∂Dn(λ)

∂a1p
f(s1) + . . .+

∂Dn(λ)

∂anp
f(sn),

where a1p, . . . , anp are the elements in the p-th row of the determinant Dn(λ) and

s1 = a+ δ, . . . , sn = a+ nδ, with δ = b−a
n .

4. Conclusions

The beginning of the theory of integral equations as an own discipline started at

the late 19th and early 20th century work of Volterra, Fredholm and Hilbert. The

lectures of Puzyna demonstrate the ideas of these pioneers. The Puzyna’s goal was to

present complete theory of the integral equations which was konown at that time, in

transparent way. For this aim he mixed different methods to solve integral equations.

The lecture is composed of such ideas:

1. Consider the equation (1) depending on the kernel, on the unknown function

into the known function as a green’s function.

2. Writing the determinant (37) of the resulting system (24).

3. Finding the solution inhomogeneous Fredholm’s equation.

4. Follow by work of Fredholm [12], he showed, by used Hadamard’s theorem,

that

K

(
s1, s2, . . . , sr
s1, s2, . . . , sr

)
≤
√
nnMn.

Comparing the framework of Puzyna’s lecture on integral equations with any

modern lectures, we can notice, that his lecture was an introduction to the theory

of integral equations mainly based on work of Fredholm. From the historical point

of view the Fredholm’s method was many years ahead of its time and, had one of

the most famous follower who was D. Hilbert. His influence, we can notice in the

Puzyna’s lecture and in the concept of modern theory of integral equations, as well.

Nowadays the theory of integral equations is developing still and gives the op-

portunity to develop of other areas of mathematics. The preliminary course is con-

structed similar like Puzyna’s lectures: they started from the same definitions, then

went through the complete theory of Fredholm and Hilbert. More advanced theory

usually appears as a part of course in functional analysis or as a help to write the

boundary problems for ordinary and partial differential equations. An important

role plays in numerical analysis of differential equations.
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RÓWNANIA CA LKOWE W NAUCZANIU i PRACY BADAWCZEJ

JÓZEFA KNIAZIA PUZYNY

S t r e s z c z e n i e

W artykule przedstawiono zarys wyk ladów Józefa Kniazia Puzyny dotycza̧cych równań
ca lkowych w kontekście jego nauczania oraz pracy badawczej.

S lowa kluczowe: równania ca lkowe, Lwowska Szko la Matematyczna, Puzyna Józef kniaź
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